전체기사 최신뉴스 GAM
KYD 디데이
증권·금융 주식

속보

더보기

'AI 신약' 나온다...구글·엔비디아·MS 가운데 승자는?

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

빅테크 간 새로운 AI 전쟁은 신약 개발
구글 '알파폴드3' 덕분에 신약 개발 빨라져
엔비디아, 반도체 넘어 헬스케어로 범위 확장
MS와 오픈 AI도 신약 개발에 눈독

[서울=뉴스핌] 한태봉 전문기자 = MS(마이크로소프트)가 투자한 오픈AI의 생성형 인공지능 '챗GPT'와 구글 '제미나이'의 경쟁이 격화되고 있다. 이런 와중에 의외의 강자가 등장했다. 바로 앤트로픽(Anthropic)의 생성형 인공지능 '클로드(Claude)'다.

'앤트로픽'은 오픈AI 출신 창업자 7명이 설립한 스타트업 회사다. '클로드 3.5'는 성능 면에서 이미 '챗GPT 4'를 뛰어 넘었다는 평가다. 이렇게 인공지능 시장은 하루가 다르게 발전 중이다. 언제든 1등이 바뀔 수 있을 만큼 경쟁이 치열하다.

◆ 빅테크 간 새로운 인공지능 전쟁은 신약 개발?

그런데 인공지능을 '생성형'으로만 활용할 필요는 없다. 부가가치가 높은 분야라면 어디든 활용하는 게 이득이다. 이런 측면에서 최근 빅테크 기업들이 관심을 보이는 분야는 '신약 개발'이다. 신약개발에 인공지능을 활용하면 '후보 물질' 발굴 시간이 획기적으로 단축되는 등 장점이 많기 때문이다.

빅테크 기업들이 제약 바이오 시장에 관심을 갖는 이유는 거대한 시장 규모 때문이다. 아이큐비아(IQVIA)는 전 세계 의약품 시장 규모를 2027년 기준 2565조원(1조9000억달러)으로 전망했다. 전 세계적인 고령화 현상으로 시간이 가면 갈수록 제약 바이오 시장 규모는 더 커질 수밖에 없다.

이런 가운데 가장 먼저 '신약 개발'에 뛰어든 빅테크 기업은 '구글(알파벳)'이다. 2016년에 이세돌과의 바둑 대결에서 승리한 '알파고'가 바로 '구글 딥마인드'의 인공지능 작품이다. 이 '딥마인드'가 신약 개발을 위해 만든 인공지능 프로그램이 바로 '알파폴드'다.

◆ 구글 '알파폴드 3' 혁신으로 신약개발 빨라져

'알파폴드(AlphaFold)'는 폴드(Fold·접힘)라는 이름처럼 단백질의 접힌 상태를 포함한 구조를 분석∙예측하는 인공지능 프로그램이다. 2018년에 '단백질 구조 예측 학술대회(CASP)'를 통해 처음으로 공개됐다. 단백질은 우리 몸 안에서 대부분의 기능을 수행하는 핵심 분자다. 단백질은 세포의 구조를 유지하고, 화학 반응을 촉매하며, 신호를 전달하고, 면역 반응을 조절하는 등의 중요한 역할을 한다.

그런데 '단백질 접힘(protein folding)'은 신약 개발에서 어떤 의미일까? 단백질은 특정한 3차원 구조로 올바르게 접혀야만 제대로 기능할 수 있다. 접힌 구조가 단백질의 활성부위와 결합부위를 형성한다. 대부분의 약물(신약)은 단백질의 특정 부위에 결합해 효과를 낸다.

이 결합 부위를 정확히 이해하려면 단백질이 어떻게 접혀있는지를 알아야 한다. 또 많은 질병이 단백질의 잘못된 접힘(misfolding)으로 인해 발생한다. 예를 들어, 알츠하이머병은 아밀로이드 베타 단백질의 잘못된 접힘과 관련이 있다. 약물 치료의 원리는 이렇게 문제가 생긴 단백질을 다시 정상화하는 데 있다.

이런 이유로 단백질 접힘 연구는 신약 개발에서 필수적이라 할 수 있다. 그런데 문제가 있다. 기존 방식으로 단백질 접힘 구조를 밝히려면 몇 개월 또는 몇 년이 걸린다. 어떤 단백질 구조는 수십 년간 연구했어도 알아내지 못했다. 이렇게 시간이 오래 걸리는 이유는 사람이 직접 단백질 구조를 하나하나 살펴보는 건 너무 느리고 비효율적이기 때문이다.

'알파폴드'는 이런 '단백질 접힘' 연구의 어려움을 돌파하기 위해 '딥러닝 알고리즘'을 활용해 개발됐다. 인공지능은 수학적 모델이라 단백질의 패턴을 사람보다 쉽게 찾아낼 수 있다. 따라서 신약 개발 시간을 크게 단축시킬 수 있다.

하지만 기존의 '알파폴드' 모델로는 여전히 신약 개발에 한계가 있었다. 이유는 단백질의 구조가 단순히 고정된 형태가 아니기 때문이다. 단백질은 생명활동에 사용될 때 각종 분자들과 결합하는데 그 때마다 구조가 약간씩 변하게 된다. 따라서 이를 적절히 예측하지 못하면 실질적으로 각종 응용분야에 활용되기가 어렵다.

그런데 2024년 5월에 공개된 '알파폴드'의 최신 버전인 '알파폴드3'는 이런 문제점을 상당 부분 해결했다. '알파폴드3'는 단백질이 각종 리간드(결합 분자), 헥산 등과 결합했을 때 단백질의 역동적인 구조변화 예측능력이 기존보다 탁월하게 발전했다.

이제 생명체의 분자와 단백질 간의 상호작용까지 예측하는 수준으로 진화한 셈이다. 따라서 '알파폴드3'는 응용가능성 측면에서 과거보다 크게 발전한 것으로 평가받고 있다.

[사진 = 셔터스톡]

◆ 구글 헬스케어? '베릴리'와 '칼리코' 기대에 못 미쳐

이런 '알파폴드'의 인공지능 기술력을 바탕으로 알파벳(구글)은 2021년에 신약 개발 기업인 '아이소모픽 랩스(Isomorphic Labs)'를 만들었다. 이 회사는 '구글 딥마인드'에서 분사했다.

'아이소모픽 랩스'는 2024년에 글로벌 제약사인 '일라이 릴리'와 '노바티스'와 전략적 협력체제를 맺고 신약 설계 작업을 하고 있다. 그 기반이 되는 모델이 바로 '알파폴드3'이다.

신약개발에서 단백질은 인간 질병의 자물쇠로 비유된다. 반면 신약은 열쇠로 비유된다. '알파폴드3'이 실제 질병과 관련 있는 단백질을 찾아낼 수만 있다면 이 단백질에 꼭 맞는 물질도 찾아낼 수 있게 된다. 물론 시간은 걸린다. 어쨌든 이 물질이 바로 치료제가 된다. '알파폴드3'은 향후 신약 개발에 일대 혁신을 가져올 것으로 전망된다.

한편, 알파벳(구글)은 '아이소모픽 랩스' 외에도 헬스케어 분야 자회사로 '베릴리(Verily)'와 '칼리코(Calico)'를 보유하고 있다. 하지만 지금까지의 성과는 기대에 못 미친다.

생명공학 회사 '베릴리'는 2015년에 구글X에서 분리된 회사다. 베릴리가 개발한 제품 중 가장 시선을 끈 건 '의료용 스마트 콘택트렌즈'였다. 하지만 상용화되지 못하고 조용히 사라졌다. 결국 2023년에 직원 중 15%를 구조조정하며 몸집을 줄여 나가고 있다.

인간의 노화와 수명 연장을 연구하는 '칼리코'는 2013년에 설립됐다. 알파벳의 자회사 중 하나다. 2017년에 '벌거숭이 두더지쥐'를 연구해 노화의 해법을 찾아 내겠다고 야심 차게 발표했다. 그래서 인간 수명 500살에 대한 기대감을 일으켰었다. 하지만 그 뒤로 상당 기간 소식이 없다. 빅테크 구글에게도 바이오는 쉽지 않은 분야다.

◆ 엔비디아, 반도체 넘어 헬스케어로 범위 확장

생성형 인공지능 전쟁의 가장 큰 수혜자인 '엔비디아'도 헬스케어 분야에 관심이 크다. 엔비디아는 지난 2024년 1월의 'JP모건 헬스케어 컨퍼런스'에서 신약 개발을 위한 생성형 AI 모델인 '바이오니모(BioNEMO)'를 선보인 바 있다.

이 당시 엔비디아의 젠슨 황 CEO는 "생성형 AI를 통해 신약 개발과 생명공학의 패러다임이 변할 것이다"라며 자신감을 드러냈다. .'바이오니모'는 엔비디아 헬스케어 전용 인공지능 플랫폼인 '클라라'의 생성형 인공지능 플랫폼 중 하나다.

클라라 플랫폼은 '바이오니모(제약바이오)', '홀로스캔(의료기기)', '파라브릭스(유전체학)', '모나이(의료 이미징)' 등을 가지고 있다. 이중 가장 화제가 된 '바이오니모'는 그간 염기서열, 아미노산 서열, 화합물 구조, 단백질 구조, 세포 등의 생체분자 언어를 대규모로 학습해 왔다.

이를 통해 신약개발을 위한 인공지능 파운데이션 모델(대규모 데이터 세트을 통해 사전에 학습된 반제품 형태)을 구축했다. 이렇게 쌓아 온 바이오 데이터를 통해 단백질 구조 예측, 단백질 서열 생성, 분자 최적화, 화합물 생성, 결합구조 예측 등의 결과물을 내 놓는다. 사용자 맞춤화도 가능하다.

전통적인 신약개발 과정은 후보 물질 발굴, 스크리닝(거르기), 물질 최적화, 독성실험, 임상 1~3상, 허가 및 출시 등의 절차를 따른다. 따라서 후보 물질 발굴부터 독성실험까지 최소 4년 이상, 임상부터 허가까지는 최소 6년 이상 소요되는 경우가 흔하다.

하지만 '바이오니모'를 활용한 인공지능 신약개발의 경우 평균 10-15년의 시간과 약 3조원이 소요되는 비용을 최대 7배 단축할 수 있다는 주장이다.

글로벌 제약사인 '암젠'은 신약개발을 목적으로 '바이오니모'를 도입했다. 또 본사에 엔비디아와 협업한 슈퍼컴퓨터 '프레이자'를 구축한 상태다. 그 외에도 많은 제약사와 바이오테크 기업들이 '바이오니모'를 적극 활용 중이다.

[사진 = 셔터스톡]

◆ 마이크로소프트와 오픈 AI도 신약 개발에 눈독

마이크로소프트도 지난 2023년 9월에 인공지능 기반의 단백질 설계 모델인 '에보디프(EvoDiff)'를 오픈 소스로 공개한 바 있다. 이 모델 역시 딥러닝 기술을 활용해 기존 단백질 구조 데이터를 학습한다. 이를 바탕으로 새로운 단백질 서열을 예측한다. 하지만 구글의 '알파폴드3'에 비하면 성능이 떨어진다는 평가가 지배적이다.

챗GPT로 생성형 인공지능 시장을 휩쓸고 있는 '오픈AI'도 최근 의료 인공지능 보조 플랫폼을 개발했다. 이 플랫폼은 의사가 암 환자를 진료하는 데 도움을 준다. '오픈AI'는 이 플랫폼을 통해 암 진단을 받은 환자에게 개인 맞춤형 진료를 제공할 계획이다.

'오픈AI'는 또 기적의 비만치료제로 전 세계를 휩쓸고 있는 '일라이 릴리'와도 협업한다. 세계적인 과제로 남아있는 '항생제 내성' 해결을 위해 생성형 AI로 새로운 항생제를 개발할 예정이다.

오픈 AI의 최고 운영 책임자(COO)인 '브래드 라이트캡'은 "첨단 인공지능은 제약 분야에서 혁신적인 돌파구를 가져올 잠재력을 가지고 있다"며 낙관적인 전망을 밝히기도 했다.

◆ 빅테크 기업 중 인공지능 신약 최후의 승자는?

빅테크 기업들인 구글, 엔비디아, 마이크로소프트, 오픈AI 등은 지금 너도나도 인공지능 신약 개발 시장에 뛰어들고 있다. 특히 바이오산업은 첨단 인공지능 기술이 가장 효과적으로 활용될 수 있는 분야 중 하나로 꼽혀 왔다. 이들 중 최후의 승자는 어디가 될까?

구글 딥마인드의 CEO인 '데미스 하사비스'는 2024년 2월에 열린 '세계 모바일 박람회(MWC)'의 기조연설에서 "과학적으로 알려진 단백질은 2000억개에 달한다. 이를 인간이 분석하는 데 10억 년이 걸리지만 '알파폴드'는 이를 1년 만에 해냈다"며 자부심을 드러냈다.

'구글 딥마인드'에서 분사한 신약개발 회사인 '아이소모픽 랩스'는 2024년 초에 일라이릴리와 2조3000억원(17억달러), 노바티스와 2조원(15억달러) 규모의 AI 신약 개발 협력 계약을 체결해 업계를 놀라게 했다.

수 많은 인공지능 사업들이 수익화에 애를 먹고 있는 것과 비교해 보면 구글이 인공지능 신약의 수익화 측면에서 한발 앞서 나가고 있는 건 분명해 보인다.

하지만 늘 상상을 뛰어넘어 왔던 '엔비디아'의 반격도 만만치 않다. '엔비디아'가 '바이오니모(BioNEMO)'를 통해 제약 바이오 분야까지 석권하는 것도 불가능한 시나리오는 아니다. 이미 엔비디아는 올해 시가총액 1위까지 치고 올라갔던 저력이 있다. 또 자금력도 넉넉하다.

하지만 빅테크 기업들의 인공지능 신약개발 모델이 과대평가 받고 있다는 지적도 나온다. 일례로 구글의 '알파폴드3'은 단백질 구조 예측 모델일 뿐 이것만으로 신약개발이 되지는 않는다는 비판이다.

한국의 한 바이오 업계 관계자는 "인공지능을 활용해 지금까지 발굴된 신약 중에 최종적으로 FDA의 승인을 받은 약은 단 1개도 없다"며 "인공지능 신약과 관련해 계속해서 거금이 투입되고 있지만 정말로 성과가 나고 있는지는 여전히 의구심이 든다"며 부정적인 의견을 보였다.

사람이 가장 돈을 아끼지 않을 때는 본인의 생명이 걸려 있을 때다. 기술 발전의 최종 종착역이 언제나 헬스케어일 수밖에 없는 이유다. '데미스 하사비스'의 호언장담처럼 2-3년 내에 구글이 디자인한 신약이 시장에 출시될 수 있을까?

미래에는 빅테크 기업인 '구글'이나 '엔비디아'가 세계 최대의 제약기업이 될지도 모른다. 투자자들은 전통의 제약 바이오 기업 외에도 빅테크 기업들의 신약 개발 과정에 지속적인 관심을 가질 필요가 있다.

longinus@newspim.com    

 

 

[뉴스핌 베스트 기사]

사진
발견 어려운 췌장암 AI로 조기 진단 [베이징=뉴스핌] 조용성 특파원 = 중국 알리바바가 개발한 AI 솔루션이 췌장암 조기 진단을 해내는 것으로 나타났다. 췌장암은 발견하기가 극히 어려운 암으로, 보통 말기에 발견된다. 때문에 췌장암은 진단 후 5년 생존율이 10%에 불과하다. 중국의 AI 솔루션이 중국의 한 병원에서 시범 적용되고 있으며, 이를 통해 췌장암 조기 발견 사례가 늘고 있다고 뉴욕타임스 중문판이 6일 전했다. 알리바바가 개발한 이 솔루션의 명칭은 'PANDA(인공지능 췌장암 검사 시스템)'이다. 촬영된 CT 영상을 AI가 판독해 췌장암 확진을 결정하는 소프트웨어다. PANDA는 중국 내 여러 병원에서 임상을 진행 중이다. 이 중 한 곳은 닝보(寧波)대학 인민병원이다. 닝보대학 인민병원은 2024년 11월 PANDA를 도입해 임상시험을 시작했다. 현재까지 PANDA는 18만 건 이상의 복부 혹은 흉부 CT를 분석했고, 이를 통해 20건 이상의 췌장암을 발견했다. 이 중 14건은 조기 진단이었다. 췌장암은 조기 진단될 경우 수술을 통한 제거가 가능하다. 한 환자의 경우 복부 팽만감과 메스꺼움의 증상으로 병원을 찾아 CT를 촬영했으며, 췌장 전문 검사를 받지 않았지만, 췌장암 판정을 받았다. 현지 의사는 "PANDA의 식별이 없었으면 결코 췌장암 판정을 못 하는 상황이었으며, PANDA로 인해 환자의 췌장암이 조기에 발견됐고 수술을 통해 완치될 수 있었다"며 "AI가 환자의 생명을 구했다고 볼 수 있다"고 소개했다. 아직은 오차율이 비교적 높은 상태다. PANDA는 그동안 1400건의 스캔 영상에 대해 췌장암 가능 경고를 했다. 전문의들은 이 중 300개에 대해서만 정밀 진단이 필요하다고 판단했다. 이후 300명의 환자는 재검사를 받았다. 이 중 20여 건이 췌장암으로 판정받았다. PANDA를 개발한 곳은 알리바바 산하 다모(達摩)연구소다. 연구소의 베테랑 알고리즘 전문가는 2000명 이상의 췌장암 환자의 CT 영상을 취득해 방사선 전문의들에게 병변 위치를 수작업으로 표시하도록 요청했다. 그리고 결과물을 AI 학습으로 훈련시켰으며, 이를 통해 PANDA는 선명도가 낮은 CT 이미지에서도 췌장암을 식별할 수 있게 됐다. 알리바바의 PANDA는 지난해 4월 미국 식품의약국(FDA)으로부터 패스트트랙 의료 기기로 선정됐다. 해당 제도는 성능이 뛰어난 의료 기기의 경우 임상 시험 기간을 단축시켜준다. 캘리포니아 대학의 한 교수는 "임상 경험이 풍부한 전문가보다 PANDA가 의사들에게 더 가치가 있을 것"이라며 "PANDA와 같은 솔루션은 지방 병원이나 진료소의 유용한 보조수단이 될 것"이라고 평가했다. 중국 병원 자료사진. [신화사=뉴스핌 특약] ys1744@newspim.com 2026-01-06 11:36
사진
9월 북극항로 첫 시범운항 [부산=뉴스핌] 최영수 선임기자 = 해양수산부가 올해 북극항로 개척에 본격 나선다. 오는 8월 말에서 9월 중 컨테이너선(3000TEU급)을 투입해 시범운항을 실시할 예정이다. 이를 위해 상반기 중 시범운항에 참여할 선사 및 화주를 모집해 선정할 방침이다. ◆ 북극항로 개척 원년…첫 시범운항 주목 김성범 해양수산부 장관직무대행(차관)은 지난 5일 부산청사 해양수산부에서 신년 기자간담회를 열고 이 같은 내용을 포함한 새해 정책방향을 제시했다. 그는 "오는 9월 전후에 시범운항을 할 수 있도록 준비하고 있다"면서 "3000TEU급 컨테이너선을 투입할 예정"이라고 밝혔다. 이어 "3000TEU급 컨테이너선이 대형에 비하면 작다고 할 수 있지만, 크기는 중요하지 않다"면서 "중국이 지난해 운항한 선박도 4000TEU급 수준"이라고 설명했다. 김성범 해양수산부 장관직무대행(차관)이 지난 5일 부산청사 해양수산부에서 신년 기자간담회를 열고 새해 정책방향을 설명하고 있다. [사진=해양수산부] 2026.01.06 dream@newspim.com 김 대행은 "시범운항을 위해 올해 상반기 중에는 선사와 화주를 선정할 예정"이라면서 "시범운항이라는 면에서 여러 가지 인센티브를 제공할 방침"이라고 밝혔다. 다만 "선사가 선정되면 선사가 희망하는 게 있기 때문에 이를 반영해서 잘 결정하겠다"고 덧붙였다. 부산신청사 건립과 관련해서는 "내년 예산에 (신청사)설계비를 반영할 예정"이라면서 "내년부터 구체적인 (청사 건립)절차를 시작할 계획"이라고 밝혔다. UN해양총회 개최지와 관련해서는 "개최도시 선정은 UN과도 협의해야 할 사항"이라면서 "(유치에)관심 있는 도시들과 협의해서 결정하겠다"고 설명했다. ◆ 부산해양수도 조성 첫발…유관기관 모으기 가속 김 대행은 지난 5일 부산청사에서 열린 해수부 시무식에서 신년사를 통해 "북극항로 시대에 대비한 동남권 대도약을 실현하겠다"고 제시했다. 이를 위해 해양수산분야 유관기관을 부산으로 모으는 작업이 본격화될 전망이다. 해수부 산하기관들도 올해 부산 이전이 본격화될 것으로 보인다.  김 대행은 "기업, 공공기관, 해사법원, 동남권투자공사 등이 집적화된 해양클러스터 조성을 추진해 나가겠다"면서 "부산항을 세계 최대 규모의 항만으로 개발하고, 터미널 운영 효율화와 종합 항만서비스 제공을 통해 글로벌 물류 요충지로 성장시키겠다"고 다짐했다. 이어 "북극항로 시대에 대비한 동남권 대도약을 실현하겠다"면서 "부산에서 로테르담까지 북극항로 시범운항을 추진하고 해양수도권 육성전략을 조속히 수립하겠다"고 강조했다. 2026년 해양수산부 업무계획 [자료=해양수산부] 2025.12.23 dream@newspim.com dream@newspim.com 2026-01-06 11:00
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동