전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 하인리히 법칙과 인공지능  

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

 

김정호 교수.

하인리히 법칙

위험을 사전에 예측하기 위한 하인리히 법칙(Heinrich's law)이 있다. 이 법칙을 다른 말로 1:29:300 법칙이라고도 부른다. 인명사고 1회가 나기 전에, 29회의 사소한 경상 사고가 있었고, 그 이전에 300회의 무상해 단순 사고가 있었다는 말이다. 즉, 큰 재해와 작은 재해 그리고 사소한 사고의 발생 비율이 1:29:300이라는 것이다.

이 법칙은 1931년 허버트 윌리엄 하인리히(Herbert William Heinrich)가 펴낸 책 '산업재해 예방: 과학적 접근'에 소개됐는데, 그가 1895년 독일에서 발생한 산업 재해 통계를 분석해서 얻은 결과이다. 그는 산업재해 사례 분석을 통해 하나의 통계적 법칙을 발견한 것이다.

사고 예방의 관점에서 하인리히 법칙을 보면, 사고 예방을 위해서는 경미한 사고라도 반복되면 그것이 언제인가 누적되고, 그 결과로 큰 사고를 일으킬 수 있다는 사실이다. 따라서 사소한 현상이라도 반복된다면, 주의를 기울일 필요가 있다. 그 사고의 원인을 제거하지 않으면 언젠가는 큰 사고로 이어진다.

이러한 사고에는 산업재해뿐만 아니라 교통사고, 의료사고 등 치명적인 인명사고를 모두 포함한다. 여기에 지진, 태풍, 폭우, 가뭄 등 자연재해뿐만 아니라 주식폭락, 환율 급등, 기업 부도, 개인 신용 파산 등 국가, 개인, 가정의 위험 상황도 포함한다.

인간이나 집단은 위험한 징후가 사전에 나타나더라도 경우 이를 무시하는 경우가 많다. 게을러서 또는 피곤해서 그럴 수도 있다. 또는 지나친 낙관주의의 결과일 수도 있고, 독단적 권위로 발생하기도 한다. 권력을 지나치게 독점하면 이런 일이 반드시 생긴다. 독선이 위선을 부르기도 한다. 때로는 인간의 지성보다 감각이 정확할 수도 더 정확할 수도 있다.

이런 경우, 결정권자 주변 조언자의 역할이 중요하다. 그러나 인간은 조직에서 바른말을 하기 어려운 경우가 많다. 하지만 미래에 이런 충실한 '조언자'의 역할을 '인공지능'이 할 수 있다. 인공지능은 인간과 다르게 배운 그대로, 학습한 그대로 행동하고 말할 수 있기 때문이다. '인공지능 참모' 혹은 '인공지능 조언자' 시대가 온다.

산업재해 통계를 통해서 얻은 하인리히 법칙을 설명하는 그림. [출처=KAIST]

전자파를 이용한 미래 예측

반도체나 컴퓨터를 설계할 때 미래를 보는 기술을 적용하는 경우가 있다. 설계 관련 사고를 사전에 방지하기 위해 필요한 기술이다. 특히 고속 디지털 데이터를 전송할 때 송신 회로, 전달 연결선, 수신 회로의 전기적인 특성인 임피던스(Impedance)가 모두 맞아야 한다. 그래야 신호가 반사되거나 왜곡되지 않고 깨끗한 디지털 신호를 보낼 수 있기 때문이다.

설계할 때, 송신단에서 미리 전송선과 수신 회로의 임피던스를 예측해보려 한다. 일종의 전자파를 이용한 하인리히 법칙을 알아보려는 시도이다. 전체 시스템의 임피던스를 어느 범위 안에 있는지 미리 봄으로써 사고를 미연에 방지하고자 하는 의도이다.

미리 전자파 펄스를 입사해서 반사파를 보면서 임피던스의 변화를 측정할 수 있다. 이 측정하는 장치를 TDR(Time domain reflectometer)이라고 부른다.

디지털 데이터를 보낼 때, 보통 1조개의 비트(Bit)를 보내서 한 개의 비트 정도 오차를 갖도록 설계한다. 이 정도 극단적인 오차 범위 내에서 데이터를 보내야 한다. 이 방법은 반도체와 반도체 사이의 디지털 신호를 보낼 때, 컴퓨터 사이의 데이터를 보낼 때 모두 만족해야 한다.

특히 인공지능 컴퓨터뿐만 아니라 데이터 센터 내의 컴퓨터끼리 데이터를 주고받을 때 모두 해당한다. 그래서 반도체와 컴퓨터의 설계에서도 미래를 예측해 사고를 방지하고 품질을 높이기 위해 노력한다. 공학적으로 미래의 사고를 예측하고 방지하는 방법이다. 이제 여기에도 '인공지능 미래 예측과 사고 방지 방법'이 사용될 것이다.

전자파의 반사를 이용해서 미래를 예측하는 측정(TDR: Time Domain Reflectometer)을 설명하는 그림. [출처=KAIST]

인공지능과 위험 탐지

인공지능이 미래를 예측해서 대형 사고를 막을 수 있다. 인간보다 감정에 휘둘리지 않고 냉정하고 정확하게 판단할 수 있다. 여기에 사용할 수 있는 대표적인 인공지능 알고리즘으로 CNN(Convolution Neural Network), RNN(Recurrent Neural Network)과 강화학습(Reinforcement Learning, RL) 알고리즘이 있다.

CNN의 경우 그래프나 이미지의 데이터 패턴의 변화를 인식해서 사고를 예측할 수 있다. 주가나 환율 변화 그래프가 그 예이다. 학습을 통해서 특정 패턴이 나타나면 이상 신호로 인식할 수 있다.

RNN의 경우 데이터의 시간에 따른 변화를 관측한다. 지진파 신호 관측이 그 예가 된다. 특정 시간 지점에서 데이터의 변화를 관찰한다. 학습을 통해서 특정한 변화를 이상 신호로 감지할 수 있다. 이러한 CNN, RNN의 경우 미리 쌓아온 경험으로 학습시키는 지도 학습에 해당한다.

반면, 강화학습의 경우 스스로 시행착오를 거치면서 배운다. 인공지능이 주식 투자를 직접 시행하면서 이익을 얻거나 손실을 당하면서 경험을 축적해 배운다. 이런 방식을 비지도 학습 방식이라고 한다. 패턴의 변화나 시간에 따른 변화를 학습해서 시행한다. 실전 경험을 쌓는 셈이다.

이러한 인공지능 알고리즘은 반도체를 생산할 때 수율 향상에 쓰일 수 있다. 반도체 생산에는 1000여개의 공정과정과 수백 가지의 재료를 사용한다. 각 공정 과정에는 측정 센서가 달려있고, 엄청난 양의 데이터가 매일 생산된다.

지금까지는 보통 수율이 갑자기 하락하면 전문가들이 데이터를 보고 '감'과 '경험'에 의존해 해결 방안을 찾았다. 이제는 막강한 빅데이터를 기반으로 이러한 '감'과 '경험'을 '인공지능 알고리즘'이 대체할 수 있다. 그러면 자동으로 수율을 목표한 일정 값으로 유지하거나 그동안 인간이 달성하지 못했던 수율도 얻을 수 있다.

그러니 인공지능을 적용한 기업과 그렇지 않은 기업은 생존 경쟁에서 비교가 되지 않는다. 인공지능이 기업의 생사를 결정할 전망이다. 여기에 더해 인공지능은 주가 폭락, 환율 변동, 지진과 같은 자연재해의 예측에 사용할 수 있다. 이러한 인공지능의 경제적 가치는 셀 수 없이 크다.

이처럼 인공지능은 인간의 오류나 게으름을 방지하는 '냉철한 조언자' 역할을 할 수 있다. 인간의 독단과 오류를 인공지능 알고리즘이 보완한다. 그러므로 인공지능을 활용하는 국가, 기업, 사회와 그렇지 못한 사회의 격차는 더욱 커질 전망이다.

최적의 미래를 판단하기 위한 인공 지능 강화 학습(Reinforcement Learning)의 과정. [출처=KAIST]

 

 

[김정호 카이스트 전기 및 전자공학과 교수] joungho@kaist.ac.kr

[뉴스핌 베스트 기사]

사진
LG전자, 홈로봇 '클로이드' CES 공개 [라스베이거스=뉴스핌] 김아영 기자 = LG전자가 오는 6일(현지시간) 미국 라스베이거스에서 개막하는 세계 최대 가전·IT 전시회 CES 2026에서 홈로봇 'LG 클로이드(LG CLOiD)'를 공개한다고 4일 밝혔다. LG 클로이드는 AI 홈로봇의 역할과 가능성을 보여주는 콘셉트 제품이다. 사용자의 스케줄과 집 안 환경을 고려해 작업 우선순위를 정하고, 여러 가전을 제어하는 동시에 일부 가사도 직접 수행하며 비서 역할을 수행한다. 이번 공개는 '가사 해방을 통한 삶의 가치 제고(Zero Labor Home, Makes Quality Time)'를 지향해온 LG전자 가전 전략의 연장선이라는 것이 회사 측 설명이다. LG 클로이드가 세탁 완료된 수건을 개켜 정리하는 모습. [사진=LG전자] ◆CES서 보여주는 '제로 레이버 홈' 관람객은 CES 전시 부스에서 클로이드가 구현하는 '제로 레이버 홈' 시나리오를 볼 수 있다. 출근 준비로 바쁜 거주자를 대신해 전날 세운 식단에 맞춰 냉장고에서 우유를 꺼내고, 오븐에 크루아상을 넣어 아침 식사를 준비하는 모습 등이 연출된다. 차 키와 발표용 리모컨 등 일정에 맞는 준비물을 챙겨 전달하는 장면도 포함된다. LG 클로이드가 크루아상을 오븐에 넣으며 식사를 준비하는 모습. [사진=LG전자] 거주자가 집을 비운 동안에는 세탁물 바구니에서 옷을 꺼내 세탁기에 넣고, 세탁이 끝난 수건을 개켜 정리하는 시나리오가 제시된다. 청소로봇이 움직일 때 동선 위 장애물을 치워 청소 효율을 높이는 역할도 수행한다. 홈트레이닝 시에는 아령을 들어 올린 횟수를 세어주는 등 거주자의 일상 케어 기능도 시연한다. 이러한 동작은 상황 인식, 라이프스타일 학습, 정교한 모션 제어 능력이 결합돼 구현된다는 설명이다. ◆가사용 폼팩터·VLM·VLA로 최적화 클로이드는 머리와 두 팔이 달린 상체와 휠 기반 자율주행 하체로 구성된다. 허리 각도를 조정해 높이를 약 105cm에서 143cm까지 바꿀 수 있으며, 약 87cm 길이의 팔로 바닥이나 다소 높은 위치의 물체도 집을 수 있다. LG 클로이드가 거주자 위한 식사로 크루아상을 준비하는 모습.[사진=LG전자] 양팔은 어깨 3축(앞뒤·좌우·회전), 팔꿈치 1축, 손목 3축(앞뒤·좌우·회전) 등 총 7자유도(DoF)를 적용해 사람 팔과 유사한 움직임을 구현한다. 다섯 손가락도 개별 관절을 가져 섬세한 동작이 가능하도록 설계됐다. 하체에는 청소로봇·Q9·서빙·배송 로봇 등에서 축적한 휠 자율주행 시스템을 적용해 무게 중심을 아래에 두고, 외부 힘에도 균형을 유지하면서 상체의 정밀한 움직임을 지원한다. 이족보행보다 비용 부담이 낮다는 점도 상용화 측면의 장점으로 꼽힌다. LG 클로이드가 홈트레이닝을 돕는 모습. [사진=LG전자] 머리 부분은 이동형 AI 홈 허브 'LG Q9' 기능을 수행한다. 칩셋, 디스플레이, 스피커, 카메라, 각종 센서, 음성 기반 생성형 AI를 탑재해 언어·표정으로 사용자를 인식·응답하고, 라이프스타일과 환경을 학습해 가전 제어에 반영한다. LG전자는 자체 개발 시각언어모델(VLM)과 시각언어행동(VLA) 기술을 칩셋에 적용했다. 피지컬 AI 모델 기반으로 수만 시간 가사 작업 데이터를 학습시켜 홈로봇에 맞게 튜닝했다는 설명이다. VLM은 카메라로 들어온 시각 정보를 언어로 해석하고, 음성·텍스트 명령을 시각 정보와 연계해 이해하는 역할을 맡는다. VLA는 이렇게 통합된 시각·언어 정보를 토대로 로봇의 구체적인 행동 계획과 실행을 담당한다. 여기에 LG의 AI 홈 플랫폼 '씽큐(ThinQ)', 허브 '씽큐 온'과 연결 가전이 더해지면 서비스 범위가 넓어진다. 예를 들어 가족과 씽큐 앱에서 나눈 메뉴 대화를 기반으로 식단을 계획하고, 날씨 정보와 창문 개폐 상태를 조합해 비가 오면 창문을 닫는 등의 시나리오가 가능하다. 퇴근 시간에 맞춰 세탁·건조를 마치고 운동복과 수건을 꺼내 준비하는 연출도 제시된다. ◆로봇 액추에이터 브랜드 'LG 악시움' 첫 공개 LG전자는 홈로봇을 포함한 로봇 사업을 중장기 성장축으로 보고 조직·기술 강화에 나서고 있다. 최근 조직개편에서 HS사업본부 산하에 HS로보틱스연구소를 신설해 전사에 흩어져 있던 홈로봇 관련 역량을 모으고, 차별화 기술 확보와 제품 경쟁력 제고를 목표로 삼았다. LG 액추에이터 악시움(AXIUM) 이미지. [사진=LG전자] 이번 CES에서는 로봇용 액추에이터 브랜드 'LG 액추에이터 악시움(LG Actuator AXIUM)'도 처음 공개한다. '악시움'은 관절을 뜻하는 'Axis'와 Maximum·Premium을 결합해 고성능 액추에이터를 지향한다는 의미를 담았다. 액추에이터는 모터·드라이버·감속기를 통합한 모듈로 로봇 관절에 해당하며, 로봇 제조원가에서 비중이 큰 핵심 부품이다. 피지컬 AI 확산과 함께 성장성이 높은 후방 산업으로 평가된다. LG전자는 가전 사업을 통해 고성능 모터·부품 기술을 축적해왔다. AI DD 모터, 초고속 청소기용 모터(분당 15만rpm), 드라이버 일체형 모터 등 연간 4,000만 개 이상 모터를 자체 생산하고 있다. 회사는 이 같은 기술력이 액추에이터의 경량·소형·고효율·고토크 구현에 기반이 될 것으로 기대한다. 휴머노이드 한 대에 수십 개 액추에이터가 필요한 만큼, LG의 모듈형 설계 역량도 맞춤형 다품종 생산에 도움이 될 것으로 전망된다. ◆홈로봇 성능·폼팩터 진화 지속…축적된 로봇 기술은 가전에 확대 적용 LG전자는 집안일을 하는 데 가장 실용적인 기능과 형태를 갖춘 홈로봇을 지속 개발하는 동시에 청소로봇과 같은 '가전형 로봇(Appliance Robot)'과 사람이 가까이 가면 문이 자동으로 열리는 냉장고처럼 '로보타이즈드 가전(Robotized Appliance)' 등 축적된 로봇 기술을 가전에도 확대 적용할 계획이다. AI가전과 홈로봇에게 가사일을 맡기고, 사람은 쉬고 즐기며 가치 있는 일에만 시간을 쓰는 AI홈을 만드는 것이 목표다. 백승태 LG전자 HS사업본부장 부사장은 "인간과 교감하며 깊이 이해해 최적화된 가사 노동을 제공하는 홈로봇 'LG 클로이드'를 비롯해 '제로 레이버 홈' 비전을 향한 노력을 지속해 나갈 것"이라고 밝혔다. aykim@newspim.com 2026-01-04 10:00
사진
의대 정시 지원자 5년 만에 최저 [서울=뉴스핌] 정일구 기자 = 올해 의과대학 정시모집 지원자가 큰 폭으로 줄어 최근 5년 중 최저치를 기록했다. 4일 종로학원에 따르면 2026학년도 전국 39개 의대 정시모집 지원자는 7125명으로 전년대비 32.3% 감소했다. 지원자는 2022학년도 9233명, 2023학년도 844명, 2024학년도 8098명, 2025학년도 1만518명으로 집계됐다. 사진은 4일 서울 시내의 한 의과대학 모습. 2026.01.04 mironj19@newspim.com   2026-01-04 15:57
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동