전체기사 최신뉴스 GAM
KYD 디데이

[김정호의 4차혁명 오딧세이] 인공지능이 반도체 설계하는 시대 온다

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

은발의 전문가 시대

필자가 연구하는 분야 중에서 반도체나 컴퓨터에서 발생하는 디지털 전자파의 발생과 간섭을 줄이는 연구하는 분야가 있다. 이 전공 분야를 전문용어로 EMC(Electromagnetic Compatibility) 또는 전자파 적합성이라고 한다.

 김정호 카이스트 교수

특히 빅데이터와 인공지능에 쓰이는 반도체에서는 대용량의 데이터를 짧은 시간에 처리하기 때문에 이러한 전자파 발생과 간섭 문제가 더욱 심각하게 되어, 설계상 중요한 관건이 되고 있다. 더 나아가 데이터 센터, 자율주행자동차 설계에도 꼭 필요한 핵심 기술이다.

그러나 전세계 4차 산업혁명 핵심 기업인 반도체, 자율주행자동차, 컴퓨터, 스마트폰 업체에서는 이러한 EMC 분야 전문가를 구하기가 매우 어렵다.

EMC 전문가가 되기 위해서는 먼저 각 해당 산업 분야의 설계 전문성이 있어야 하고 거기에 더해서 EMC 지식과 경험을 갖춘 실력을 함께 갖추어야 한다.

특히 이 EMC 분야에 전문 인력이 적은 이유는 전자파 이론의 학술적 기초에 더해서 현장 경험이 필요하다. 실제 제품 설계에 적용해야 하고, 컴퓨터 시뮬레이션과 측정 경험을 쌓아야 한다. 그러니 진정한 전문가가 되려면 거의 30 년 이상이 족히 걸린다.

이 EMC 분야의 전문가들는 미국, 일본, 유럽에서 보면 대부분 국방, 항공, 또는 우주 관련 산업에서 일하고 있다. 이러한 분야에서는 외국인이 시민권 없이는 프로젝트에 참여하거나 취업하기 어렵다. 그래서 미국의 관련학회에 가면 동양인이 많지 않다. 그래서 젊은 우수 인력이 배출되기 더욱 어렵다. 그 결과 이 분야의 전문가들은 대부분 60대 70대 ‘은발의 노 신사’ 전문가 들이다. 이러한 현상은 반도체 설계 분야도 마찬가지이다.

'IEEE EMC Chicago Chapter 2018 행사' 참석자들 가운데 은발의 EMC 전문가들과 그 가족들이 보인다. [출처=IEEE]

인공지능이 반도체 설계 가능해

반도체 설계 절차에는 전체 구조(Architecture) 설계, 논리 설계, 회로 설계, 배치 설계(Floor Planning), 그리고 도면 설계(Layout) 등의 과정을 거친다. 이 설계 결과에 따라 반도체의 계산 속도, 전력 소모, 면적, 가격 등이 정해진다. 그런데 요즈음 이러한 반도체 설계 과정에서 컴퓨터 CAD(Computer Aided Design) 소프트웨어의 도움을 많이 받는다. 전기적, 기계적 모델을 이용해서 컴퓨터 시뮬레이션을 하고 그 성능을 제작 이전에 검증해 볼 수 있다. 이처럼 컴퓨터 시뮬레이션으로 목표 성능이 달성된 다음 여러 가지 목표 조건을 동시 혹은 최소 비용으로 구현하는 최적화 설계 과정을 거치게 된다. 그 결과 개발 인력, 비용, 그리고 시간을 줄인다.

이러한 반도체 최적 설계에서도 ‘컴퓨터’가 일정 부분 ‘전문가’를 대신에 준다. 그런데 지금의 CAD 설계와 최적화는 일정 부분 한계를 가지고 있다. 컴퓨터 성능 한계 때문이기도 하고, 설계와 최적화 알고리즘의 한계 때문이기도 하다. 그래서 전문가의 실력과 경험이 CAD 기능과 결합하여 최선의 설계하고 있다. 지금의 반도체 프로세서, 메모리, 센서도 이러한 설계 과정을 거친다. 그런데 이 설계에서의 ‘전문가’ 역할을 ‘인공지능’이 대신하는 시대가 조금씩 다가 오고 있다.

인공지능 알고리즘 중에 ‘강화학습(Reinforcement Learning)’ 알고리즘이 있다. 알파고 바둑 게임에도 적용되었다. 인공지능(Agent)이 어떤 결정을 내리고 행동(Action)을 하면서, 상대와의 반응을 보고 기록(State)하면서 동시에 스스로 학습해 간다. 수많은 시행과 상대방 반응 과정을 반복하면서 학습해 간다. 목표 지표(Reward)가 바둑 알파고에서는 승률이 되고, 인공지능 반도체 설계에서는 목표 성능이 된다. 최적 승률이 되는 바둑을 두듯이 최적 성능을 갖는 조건을 학습해 간다. 알파고에서는 기보(Supervised Learning)를 이용하거나 알파고 끼기 자율학습(Unsupervised Learning)을 한다.

다르게 말하면 알파고에서 사용되었던 인공지능 알고리즘을 그대로 반도체 최적 성능 설계에 적용될 수 있다. 그러면 반도체 설계 프로그램인 에이전트(Agent) 실력이 ‘이세돌 급'이 되는 것이다. 그러면 인공지능이 세계 최고 수준의 반도체 설계 전문가가 된다.

알파고에서는 기존의 기보를 사용하면서 배우거나 알파고 끼리의 바둑으로 자체 기보를 만들어 스스로 학습하기도 한다. 반도체 설계 인공지능에서는 컴퓨터 CAD 시뮬레이션이 학습(Learning) 기회를 제공해 준다. 알파고에서는 승률이 보상(Reward)이 되고, 반도체 설계에서는 성능 만족 정도가 보상(Reward)이 된다.

이처럼 강화학습 반도체 설계 인공지능에서는 컴퓨터 시뮬레이션을 이용해서 학습한다. 강화학습 설계 사례가 증가하면서 학습용 데이터가 증가해서 전문가 실력이 급상승한다. 인공지능 전문가 인간을 대신하기 때문에 학습속도가 훨씬 빠르다. 그리고 인공지능의 기억이나 능력이 지워지거나 ‘은발'이 되어도 100년이 되어도 떨어지지 않는다.

딥러닝 강화학습인 Deep Q Learning 알고리즘을 이용한 반도체 설계 과정. [출처=KAIST]

 

딥러닝 강화학습인 Deep Q Learning 알고리즘을 이용해서 최적화 설계한 반도체 설계 결과. [출처=KAIST]


인공지능 전문가의 세상

이러한 인공지능 설계는 더 나아가 테스트의 설계, 테스트와 생산 공정상의 데이터 분석에도 사용될 전망이다. 특히 반도체 생선 공정의 수율 분석에 인공지능이 사용될 수 있다. 공정 데이터를 분석해서 인공지능에 의한 최적 공정을 찾아 낸다면, 반도체 기업의 생산성과 수율, 순이익 그리고 경쟁력도 인공지능에 달려 있을 것으로 전망한다. 이처럼 4차 산업혁명에 필요한 반도체 설계, 테스트, 생산관리 등 전 분야에서 인공지능이 전문가를 대체하는 시대가 다가 오고 있다.

필자 연구실에서도 일부 반도체 설계에 Deep Q 러닝이라고 불리는 강화학습 방법을 이용해 기초적인 설계 최적화를 시도해 보고 있다. 가능성이 이미 충분히 보인다. 추후 컴퓨터 성능만 지원된다면 훨씬 복잡한 설계도 가능한 것을 확인했다.

그래서 인공지능의 색깔은 ‘은빛 색깔'이다. 인간이 60세 이상 몰입해야 도달할 수 있는 전문가 수준을 인공지능은 금방 구현할 수 있다. 이렇게 되면 ADA(ALL DESIGN by AI) 세상이 올 수 있다. 인공지능이 반도체를 설계하고, 그 AI 반도체가 인공지능 계산을 한다. 인간이 파고들 틈이 없다. 그럼 인공지능이 국가간, 사회 내에서 정보, 자원, 자본, 시장 분만 아니라 고급 인력과 기술의 독점 현상을 가속화 할 수 있다.

인공지능 알고리즘을 이용해서 반도체 설계를 자동화한 ADA(All Design by AI) 개념. [출처: KAIST]

 

joungho@kaist.ac.kr


[김정호 카이스트 전기 및 전자공학과 교수]

 

[뉴스핌 베스트 기사]

사진
황대헌 "결승서 플랜B 급변경" [서울=뉴스핌] 박상욱 기자 = 한국 남자 쇼트트랙 선수로는 처음으로 3개 대회 연속 메달을 따낸 황대헌(강원도청)은 "이 자리에 오기까지 너무 많은 시련과 역경이 있었다. 너무 소중한 메달"이라고 말했다. 황대헌은 "월드투어 시리즈를 치르면서 많은 실패와 도전을 했고, 그런 부분을 제가 많이 연구하고 공부해서 좋은 결과로 이어졌다"고도 했다. 황대헌은 15일(한국시간) 2026 밀라노·코르티나담페초 동계 올림픽 쇼트트랙 남자 1500m 결승에서 옌스 판트 바우트(네덜란드)에 이어 2위로 은메달을 거머쥐었다. 그는 2018 평창 대회 남자 500m 은메달을 시작으로 2022 베이징 대회에서 남자 1500m 금메달과 남자 5000m 계주 은메달을 땄다. [밀라노 로이터=뉴스핌] 박상욱 기자= 황대헌이 15일(한국시간) 2026 밀라노·코르티나담페초 동계올림픽 쇼트트랙 남자 1500m 시상식에 오르며 주먹을 불끈 쥐고 있다. 2026.02.15 psoq1337@newspim.com 황대헌에게 이번 올림픽은 출발부터 쉽지 않았다. 지난해 11월 네덜란드 도르드레흐트에서 열린 2025-2026 국제빙상경기연맹(ISU) 쇼트트랙 월드투어 4차 대회에서 왼쪽 무릎을 다쳤다. 부상 치료가 완전히 끝나지 않은 상태에서 올림픽을 준비했다. 이날 결승은 9명이 함께 뛰었다. 황대헌은 "2022년 베이징 대회 때는 결승에서 10명이 뛰었다. 그리 놀라운 상황은 아니었다"며 "쇼트트랙 레이스의 흐름이 많이 바뀌어서 공부도 많이 했고, 계획했던 대로 경기를 풀어갈 수 있었다"고 설명했다. 이어 "경기 운영엔 다양한 전략이 있었다. 순간적으로 플랜B로 바꿨다"며 "자세한 내용은 제가 많이 연구한 결과라 소스를 공개할 수는 없다"며 미소를 보였다. psoq1337@newspim.com 2026-02-15 09:10
사진
최가온이 전한 긴박했던 순간 [서울=뉴스핌] 장환수 스포츠전문기자= "들것에 실려 나가면 그대로 끝이었어요." 2026 밀라노·코르티나담페초 동계올림픽 스노보드 여자 하프파이프에서 한국 설상 종목 사상 첫 금메달을 따낸 최가온(세화여고)이 가장 아찔했던 순간을 돌아봤다. 최가온. [사진=대한체육회] 최가온은 14일(한국시간) 이탈리아 밀라노 코리아하우스에서 열린 대한체육회 공식 기자회견에서 전날 결선 1차 시기를 떠올렸다. 그는 리비뇨 스노파크에서 열린 결선 1차 시기에서 크게 넘어지며 한동안 일어나지 못했다. 의료진이 내려와 상태를 확인했고, 들것이 대기한 긴박한 상황이었다. 최가온은 "들것에 실려 나가면 병원으로 가야 했고, 그러면 대회를 포기해야 하는 상황이었다"며 "포기하면 평생 후회할 것 같았다. 다음 선수가 기다리고 있어 시간이 많지 않았는데 잠시만 시간을 달라고 하고 발가락부터 힘을 주며 움직이려 했다"고 말했다. 다행히 걸을 수는 있었지만 코치는 기권을 권유했다. 최가온은 "나는 무조건 뛰겠다고 했지만 코치님은 걸을 수 없는 상태로 보셨다"며 "이를 악물고 계속 걸어보려 했고, 다리 상태가 조금씩 나아져 2차 시기 직전 기권을 철회했다"고 설명했다. [리비뇨 로이터=뉴스핌] 장환수 스포츠전문기자= 최가온이 13일 스노보드 여자 하프파이프 결선 1차 시기에서 넘어지자 의료진이 달려와 상태를 살펴보고 있다. 2026.02.13 zangpabo@newspim.com 1, 2차 시기 연속 실수로 벼랑 끝에 몰렸지만 3차 시기에서 반전이 일어났다. 최가온은 "긴장감이 오히려 사라졌다. 기술 생각만 하면서 출발했다. 내 연기를 완성하겠다는 생각뿐이었다"고 돌아봤다. 그리고 900도와 720도 회전을 안정적으로 연결하며 90.25점을 받아 극적인 역전 우승을 완성했다. 은메달을 차지한 교포 선수 클로이 김(미국)과 관계도 화제가 됐다. 최가온은 "클로이 언니가 안아줬는데 정말 행복했다. 그 순간 '내가 언니를 넘어섰구나' 하는 감정이 몰려왔고 눈물이 터졌다"고 했다. 이어 "경기 전에는 언니가 금메달을 땄으면 좋겠다는 생각이 들 정도로 마음이 복잡했다. 존경하는 선수라 기쁨과 서운함이 동시에 들었다"고 솔직하게 털어놨다. 부상 직후 재도전에 대한 두려움은 없었을까. 그는 "어릴 때부터 겁이 없었다. 언니, 오빠들과 함께 타며 자연스럽게 생긴 승부욕이 두려움을 이겨낸 것 같다"며 웃었다. [리비뇨=로이터뉴스핌] 밀라노-코르티나 2026 동계올림픽 스노보드 여자 하프파이프에서 금메달을 획득한 최가온 선수가 지난 12일 이탈리아 리비뇨 스노파크에서 열린 시상식에서 태극기를 들어 보이고 있다. 2026.02.13 photo@newspim.com 많은 눈이 내린 경기 환경에 대해서도 담담했다. "첫 엑스게임 때 눈이 정말 많이 왔는데 그때에 비하면 괜찮았다. 경기장에 들어갔을 때 함박눈이 내려 오히려 예쁘다고 느꼈다. 시상대에서도 눈이 내려 클로이 언니와 '이렇게 눈이 내리니 좋다'고 이야기했다"고 전했다. 몸 상태는 완전하지 않았다. 그는 "무릎이 아주 아팠지만 많이 좋아졌다"며 "올림픽을 앞두고 훈련 중 다친 왼쪽 손목은 귀국 후 점검해야 한다"고 밝혔다. 이어 "이번 올림픽에서 최고의 경기력을 보여드리지는 못했다. 기술 완성도를 더 높이고 긴장감을 다스리는 법도 보완하고 싶다"며 "먼 미래보다 당장 지금의 나보다 더 나은 선수가 되는 게 목표"라고 말했다. 최가온. [사진=올댓스포츠] 가족에 대한 고마움도 전했다. 최가온은 "아버지가 내가 어릴 때 일을 그만두고 이 길을 함께 걸었다. 많이 싸우기도 했지만 끝까지 포기하지 않고 함께해줘 지금 이 자리에 있는 것 같다"며 고개를 숙였다. 귀국 후 계획을 묻자 "할머니가 해주는 밥을 먹고 싶다. 친구들과는 파자마 파티를 하기로 했다"며 수줍게 웃었다. 금메달과 함께 포상금과 고급 시계를 받게 된 데 대해서는 "과분한 것들을 받게 돼 영광이다. 시계는 잘 차겠다"고 말했다. 스노보드 꿈나무들에게는 "하프파이프는 즐기면서 타는 게 가장 중요하다. 다치지 말고 즐기면서 탔으면 좋겠다"고 조언했다. 들것 앞에서 멈추지 않았던 17세의 선택은 결국 한국 설상 종목의 새 역사가 됐다. zangpabo@newspim.com 2026-02-14 22:35
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동