전체기사 최신뉴스 GAM
KYD 디데이

에너지연, 연료전지 촉매 내구성 문제 해결…나노샌드위치 구조 개발

기사입력 : 2021년03월10일 12:00

최종수정 : 2021년03월10일 12:00

[대전=뉴스핌] 김태진 기자 = 국내 연구진이 새로운 나노샌드위치 촉매구조를 개발해 연료전지 촉매의 내구성 문제를 해결했다.

한국에너지기술연구원은 에너지소재연구실 김희연 박사 연구진이 바이오매스의 일종인 박테리아 셀룰로오스를 원료로 사용해 600도 이상의 비교적 낮은 온도에서 열처리하는 것만으로 표면적과 전기전도도가 우수한 탄소를 제조하는 기술을 개발했다고 10일 밝혔다.

연료전지에 사용되는 백금 촉매의 성능과 내구성 향상을 위해 박테리아가 만들어낸 나노셀룰로오스와 백금 나노입자, 다공성 그래핀이 층을 이룬 샌드위치 구조로 결합된 새로운 촉매구조를 개발한 것이다.

박테리아 셀룰로오스 표면(회색 그물구조)에 담지된 백금 나노 촉매(연두색 입자)의 표면에 그래핀 보호막(검은색 그물구조)을 적용한 샌드위치형 연료전지 전극[사진=한국에너지기술연구원] 2021.03.10 memory4444444@newspim.com

이로써 기존의 상용 촉매에 비해 장기 안정성이 220% 이상 향상된 연료전지용 촉매 합성에 성공했다.

고분자전해질연료전지에 사용되는 백금 촉매는 우수한 성능에도 불구하고 높은 가격으로 제조비용을 절감하는 것과 동시에 장기내구성을 향상하는 것이 핵심이다. 연구자들은 촉매의 크기를 감소시켜 적은 양의 원료로도 넓은 활성 면적을 얻는 방법을 연구한다.

그러나 촉매 입자의 크기가 작아질수록 입자의 불안정성 또한 증가해 더 쉽게 용해(dissolution)되거나 응집(ripening)돼 오히려 비활성화에 더 취약하게 되는 단점이 있다.

연구진은 이러한 단점을 극복하기 위해 새로운 나노샌드위치 구조의 촉매를 제시했다.

즉 탄화된 박테리아 셀룰로오스를 촉매지지체로 하고 이 표면에 화학기상증착법을 사용해 백금 나노입자를 고분산 담지한 후 다공성 그래핀 덮개를 적용하는 새로운 나노샌드위치형 촉매구조를 합성했다.

나노샌드위치형 백금 촉매는 셀룰로오스 지지체의 우수한 전기적, 내화학적 특성과 함께 그래핀 덮개의 촉매입자 부식, 탈락, 응집을 방지한다. 이로 인해 기존 상용 촉매에 비해 내구성이 220% 이상 향상되는 결과를 얻었다.

연구진이 개발한 나노샌드위치형 촉매는 박테리아 셀룰로오스 탄화체의 초박형 구조로 인해 초박막 전극의 제조에 유용하며 전기화학적 수소생산 등 다양한 전기화학반응에 효과적으로 적용할 수 있다.

박테리아 셀룰로오스를 원료로 하는 다공성 나노탄소는 기존 탄소소재인 카본블랙, 활성탄소의 합성 공정보다 현저히 낮은 온도에서 합성이 용이해 기존의 탄소소재를 효과적으로 대체할 수 있을 것으로 기대된다.

김희연 박사[사진=한국에너지기술연구원] 2021.03.10 memory4444444@newspim.com

김희연 박사(책임연구원)는 "2000년대 중반부터 천연 셀룰로오스 소재의 고부가 활용기술 개발을 통해 다양한 셀룰로오스 탄화체를 합성하고 이를 촉매 지지체 및 연료전지 전극 등에 활용하기 위한 기술을 연구해왔다"며 "이번 연구는 바이오매스의 고부가 활용기술 및 반도체 공정 기반 촉매 제조기술을 접목해 시너지를 창출했다는데 또 다른 의미가 있다"고 말했다.

이번 연구는 한국에너지기술연구원 주요사업과 과학기술정보통신부 한국연구재단의 기초연구(중견연구)사업의 지원을 받아 수행됐다.

연구결과는 미국화학회에서 발행하는 'ACS Applied Energy Materials' 지난 2월 22일 표지 논문(front cover)으로 게재됐다.

memory4444444@newspim.com

[뉴스핌 베스트 기사]

사진
트럼프 "하메네이 어디있는지 알아" [뉴욕=뉴스핌] 김민정 특파원 = 도널드 트럼프 미국 대통령은 이란 최고 지도자 아야톨라 알리 하메네이가 어디에 있는지 안다면서 이란을 향해 조건 없는 항복을 촉구했다. 트럼프 대통령은 17일(현지시간) 자신의 소셜미디어 트루스 소셜에 "우리는 이른바 '최고지도자"가 어디에 숨었는지 정확히 알고 있다"며 "그는 쉬운 표적이지만 지금 그곳에 있는 한 안전하다"고 했다. 그러면서 "우리는 적어도 지금은 그를 제거하지 않을 것(즉 죽이지 않을 것)"이라고 썼다. 다만 트럼프 대통령은 "우리는 민간인이나 미군을 향해 미사일이 발사되는 것을 원치 않는다"며 "우리의 인내심은 점점 바닥나고 있다"고 강조했다. 이어진 게시글에는 "조건 없는 항복!"이라고 적었다. 이날 트럼프 대통령의 발언은 트럼프 대통령이 하메네이를 제거하려는 이스라엘의 계획을 저지했다는 보도가 전해진 후 나왔다. 전날 베냐민 네타냐후 이스라엘 총리는 이 같은 보도에 대해 "섣부르게 결론을 내리지 않았으면 한다"고 말하며 그 차이를 일축했다. 아야톨라 알리 하메네이 이란 최고지도자가 지난 4일(현지시간) 1979년 이슬람 혁명의 지도자인 루홀라 호메이니 아야톨라 사망 36주년을 맞아 테헤란 남부 호메이니 기념관에서 연설하는 모습. [사진=로이터 뉴스핌] mj72284@newspim.com 2025-06-18 02:05
사진
[이재명의 사람들] '포용복지' 문진영 수석 [서울=뉴스핌] 박성준 기자 = 문진영 대통령실 사회수석은 이재명 대통령의 복지 철학을 가장 가까이서 이해하고 이를 실제 정책으로 구현해 온 대표적인 정책 참모다. 복지국가 구상에서 구체적 설계, 제도 실행까지 전 과정을 함께해온 핵심 브레인으로, 현 정부의 사회정책 방향을 가늠할 수 있는 인물로 평가받는다. 1962년 서울에서 태어난 문 수석은 연세대학교에서 사회복지학 학·석사 과정을 마치고, 영국 헐(University of Hull) 대학에서 사회정책학 박사 학위를 받았다. 이후 성공회대학교 조교수, 서강대학교 신학대학원 사회복지정책학과 교수로 재직하며 학문과 정책 현장을 오갔다. 그는 국민기초생활보장법 제정 당시 시민사회단체 정책위원장으로 활동했고, 이후 국민취업지원제도 도입, 기초생활보장제도 개편 등 복지제도 확충에도 깊숙이 참여했다. 문 수석이 '정책형 학자' 또는 '현장형 브레인'으로 불리는 이유는 그의 경력에서 비롯된다. 중앙정부와 지방정부, 연구와 실무를 두루 거친 이력은 책상 위 이론을 넘은 정책 설계의 밑바탕이 됐다. 문진영 대통령실 사회수석. [사진=대통령실] 아동수당 도입 논의 초기부터 실효성 있는 대안을 제시해 왔고, 이를 '아동청소년수당'으로 개편해 지급 연령을 만 18세까지 확대하는 방안을 설계했다. 이는 이재명 정부 복지 정책의 핵심 방향 중 하나로, 문 수석이 실질적인 설계자 역할을 수행했음을 보여주는 사례다. 그는 2018년 이재명 당시 경기도지사 취임 직후 인수위에 참여했고, 이후 경기도일자리재단 대표이사로 2년간 청년·여성·중장년 대상 맞춤형 고용·복지 정책을 추진하며 '현장 중심 정책가'로 자리매김했다. 현장과 학계, 캠프와 정부를 아우르는 경험은 이재명 대통령의 국정 철학을 누구보다 잘 이해하고, 이를 사회정책 전반에 녹여낼 수 있는 강점으로 작용하고 있다. 특히 20대 대선에서는 더불어민주당 선거대책위 포용복지국가위원회에서 이재명 당시 후보의 복지 공약을 총괄 설계하며 아동수당 확대, 돌봄 국가책임제, 육아휴직 부모 할당제 등의 정책을 이끌었다. 강훈식 대통령비서실장도 "복지 제도에 대한 이해가 깊으며 아동수당 도입 등 실효성 있는 정책을 제시해 온 분으로 대통령의 복지 국가 비전을 구체화할 것"이라며 문 수석에 대한 기대감을 드러냈다. 문 수석 임명은 이재명 정부가 추진하는 포용사회, 복지국가 기조를 본격화하겠다는 신호탄으로 읽힌다. 향후 아동·청소년, 취약계층 지원은 물론, 일과 돌봄의 국가 책임 확대, 사회안전망 정비 등 주요 복지과제를 설계·집행할 실무 총괄자로서 그의 역할은 더욱 중요해질 전망이다. 문 수석은 이론과 실천을 겸비한 정책가로, 정부가 말하는 '국민의 삶을 책임지는 복지국가' 실현의 핵심 인물로 떠오르고 있다. ▲1962년 서울 출생 ▲연세대 사회복지학 ▲영국 헐대 사회정책학 박사 ▲성공회대 사회복지학과 조교수 ▲국가인권위원회 사회권 전문위원회 위원 ▲경기도지사 인수위원회 문화복지분과 위원장 ▲경기도 일자리재단 대표이사 ▲대통령 직속 정책기획위원회 포용사회 분과위원장 parksj@newspim.com 2025-06-18 07:00
안다쇼핑
Top으로 이동