전체기사 최신뉴스 GAM
KYD 라이브
KYD 디데이
산업 ICT

속보

더보기

KAIST, 양자 인공지능 알고리즘 개발..."현재 기술 추월"

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

고전 컴퓨팅 대비 기하급수적으로 뛰어난 성능 발휘
IBM 클라우드 서비스를 통해 실제 양자컴퓨터에서 양자 지도학습 시연

[서울=뉴스핌] 김지완 기자 = 국내 연구진이 기존 인공지능 기술을 뛰어넘는 양자 인공지능 알고리즘을 개발했다.

KAIST는 전기및전자공학부 및 AI 양자컴퓨팅 IT 인력양성연구센터 이준구 교수 연구팀이 독일 및 남아공 연구팀과의 협력 연구를 통해 비선형 양자 기계학습 인공지능 알고리즘을 개발했다고 7일 밝혔다.

[서울=뉴스핌] 김지완 기자 = 인공지능을 통한 분류에 있어 비선형 커널을 이용한 특징 분류 기술. [제공=KAIST] 2020.07.07 swiss2pac@newspim.com

양자 인공지능은 양자컴퓨터의 발전과 함께 현재의 인공지능을 앞설 것으로 크게 기대되고 있으나 연산 방법이 전혀 달라 새로운 양자 알고리즘의 개발이 절실하다. 특히 양자컴퓨터는 본질적으로 일차방정식을 잘 푸는 선형적 성질을 가지고 있어 복잡한 데이터를 다루는 비선형적 기계학습에 어려움이 존재했다.

하지만 이번 연구를 통해 비선형 커널이 고안되어 복잡한 데이터에 대한 양자 기계학습이 가능하게 됐다. 특히 이준구 교수팀이 개발한 양자 지도학습 알고리즘은 학습에 있어 매우 적은 계산량으로 연산이 가능하다. 따라서 대규모 계산량이 필요한 현재의 인공지능 기술을 추월할 가능성을 제시한 것으로 평가를 받고 있다.

이준구 교수팀은 학습데이터와 테스트데이터를 양자 정보로 생성한 후 양자 정보의 병렬연산을 가능하게 하는 양자포킹 기술과 간단한 양자 측정기술을 조합해 양자 데이터 간의 유사성을 효율적으로 계산하는 비선형 커널 기반의 지도학습을 구현하는 양자 알고리즘 체계를 만들었다. 이후 IBM 클라우드 서비스를 통해 실제 양자컴퓨터에서 양자 지도학습을 실제 시연하는 데 성공했다.

기계학습에 있어 중요한 문제 중 하나는 주어진 데이터의 특징(feature)을 구분해 분류하는 것이다. 간단한 예로 동물 이미지 학습데이터에서 입, 귀 등의 특징을 바탕으로 분류하기 위한 결정 경계(decision boundary)를 학습하고 새로운 이미지가 입력되었을 때 개 또는 고양이로 분류하는 작업을 생각해볼 수 있다.

데이터의 특징들이 잘 나타나는 경우에는 선형적 결정 경계만으로 분류할 수 있다. 그러나 입과 귀 모양의 특징으로만 개와 고양이를 분류하기 쉽지 않다면 새로운 결정 경계를 찾기 위해 특징에 관한 정보 공간의 차원을 확장해야 하는데 이러한 과정에서 비선형 커널 기술이 필요하다.

[서울=뉴스핌] 김지완 기자 = 큐비트 IBM 양자 컴퓨터로 구현한 양자 기계학습의 예시. [제공=KAIST] 2020.07.07 swiss2pac@newspim.com

양자컴퓨팅은 고전 컴퓨팅과는 달리 큐비트(quantum bit, 양자컴퓨팅 정보처리의 기본 단위)의 개수에 비례해 정보 공간의 차원이 증가하기 때문에 이론적으로 고차원 정보처리에 있어 기하급수적으로 뛰어난 성능을 낼 수 있다.

연구팀은 이러한 양자컴퓨팅의 장점을 활용해 데이터 특징 대비 기하급수적인 계산 효율성을 달성하는 양자 기계학습 알고리즘을 개발했다.

이 교수 연구팀이 개발한 이 알고리즘은 저차원 입력 공간에 존재하는 데이터들을 큐비트로 표현되는 고차원 데이터 특징 공간(feature space)으로 옮긴 후, 양자화된 모든 학습데이터와 테스트데이터 간의 커널 함수를 양자 중첩을 활용해 동시에 계산하고 테스트데이터의 분류를 효율적으로 결정한다. 이때 사용되는 양자 회로의 계산 복잡도는 학습 데이터양에 대해서는 선형적으로 증가하나, 데이터 특징 개수에 대해서는 불과 로그(log)함수로 매우 천천히 증가하는 장점이 있다.

연구팀은 이와 함께 양자 회로의 체계적 설계를 통해 다양한 양자 커널 구현이 가능함을 이론적으로 증명했다. 커널 기반 기계학습에서는 주어진 입력 데이터에 따라 최적 커널이 달라질 수 있으므로, 다양한 양자 커널을 효율적으로 구현할 수 있게 된 점은 양자 커널 기반 기계학습의 실제 응용에 있어 매우 중요한 성과다.

연구팀은 IBM이 클라우드 서비스로 제공하는 다섯 개의 큐비트로 구성된 초전도 기반 양자 컴퓨터에서 이번에 개발에 성공한 양자 기계학습 알고리즘을 실험적으로 구현해 양자 커널 기반 기계학습의 성능을 실제 시연을 통해 이를 입증하는 데 성공했다.

이 연구에 참여한 박경덕 연구교수는 "연구팀이 개발한 커널 기반 양자 기계학습 알고리즘은 수년 안에 상용화될 것으로 예측되는 수 백 큐비트의 NISQ(Noisy Intermediate-Scale Quantum) 컴퓨팅의 시대가 되면 기존의 고전 커널 기반 지도학습을 뛰어넘을 것ˮ이라면서 "복잡한 비선형 데이터의 패턴 인식 등을 위한 양자 기계학습 알고리즘으로 활발히 사용될 것ˮ이라고 말했다.

한편 이번 연구는 각각 한국연구재단의 창의 도전 연구기반 지원 사업과 한국연구재단의 한-아프리카 협력기반 조성 사업, 정보통신기획평가원의 정보통신기술인력 양성사업(ITRC)의 지원을 받아 수행됐다.

swiss2pac@newspim.com

[뉴스핌 베스트 기사]

사진
李대통령 국정지지율 61% [한국갤럽] [서울=뉴스핌] 박찬제 기자 = 이재명 대통령의 국정 지지율이 소폭 상승해 61%를 기록했다는 여론조사 결과가 23일 나왔다. 한국갤럽은 지난 20~22일 전국 만 18살 이상 유권자 총 1000명을 대상으로 진행한 조사에서 이 대통령의 직무수행 평가에 '잘하고 있다'며 답한 응답자는 지난주보다 3%포인트(p) 오른 61%로 나타났다. '잘못하고 있다'는 부정 평가는 직전 조사보다 2%p 줄어든 30%로 조사됐다. '의견 없음'은 10%다. 이재명 대통령이 21일 청와대에서 신년 기자회견을 하면서 언론 질문에 답하고 있다. [사진=청와대] 이 대통령 직무 수행의 긍정적 이유는 외교가 27%로 가장 높았다. 뒤이어 '경제·민생'이 14%, '소통'이 8%였다. 부정적 평가 이유로는 '경제·민생'이 22%, '독재·독단'과 '전반적으로 잘못한다'가 각각 7%를 차지했다. '도덕성문제·본인 재판 회피(6%)', '과도한 복지·민생지원금(5%)' 등의 이유도 있었다. 정당 지지도는 여당인 더불어민주당이 2%p 오른 43%, 국민의힘은 2%p 하락한 22%로 조사됐다. 조국혁신당은 3%, 개혁신당 2%, 진보당 1%였다. 무당층은 27%다.이번 조사는 이동통신 3사가 제공한 무선전화 가상번호를 무작위로 추출해 전화조사원이 인터뷰하는 방식으로 이뤄졌다. 표본오차는 95% 신뢰수준에서 ±3.1%포인트다. 응답률은 12.3%다. 자세한 내용은 중앙여론조사심의위원회 홈페이지에서 확인할 수 있다. pcjay@newspim.com 2026-01-23 10:51
사진
한덕수 징역 23년 선고...법정구속 [서울=뉴스핌] 홍석희 박민경 기자 = 윤석열 전 대통령의 내란 행위 방조 등 혐의로 재판에 넘겨진 한덕수 전 국무총리가 21일 1심에서 징역 23년을 선고받았다. 법원은 12·3 비상계엄을 "윤석열 전 대통령의 친위 쿠데타"로 규정하며 조은석 특별검사팀이 구형한 징역 15년을 훌쩍 뛰어넘는 중형을 선고했다. 서울중앙지법 형사합의33부(재판장 이진관)는 이날 내란우두머리방조·내란중요임무종사·위증 등 혐의를 받는 한 전 총리에게 징역 23년을 선고하고, 증거 인멸을 우려로 법정 구속했다. 검정색 정장, 흰색 셔츠에 청록색 넥타이를 매고 법정에 나온 한 전 총리는 재판부가 판결문을 읽는 동안 허리를 꼿꼿이 세우고 무표정으로 앉아 있었다. [서울=뉴스핌] 류기찬 기자 = 한덕수 전 국무총리가 21일 오후 서울 서초구 서울중앙지방법원에서 열린 내란 방조 및 내란 중요임무 종사 혐의 관련 1심 선고 공판에 출석하고 있다. 2026.01.21 ryuchan0925@newspim.com 재판부는 한 전 총리의 내란중요임무종사 혐의에 대해 유죄로 판단하면서 "12·3 비상계엄 선포와 이에 근거해 위헌·위법한 포고령을 발령하고, 군 병력을 동원해 국회 등을 점거한 행위는 형법상 내란 행위에 해당한다"고 판시했다. 재판부는 한 전 총리가 계엄 직전 국무회의의 절차적 요건을 갖추는 방식으로 내란의 중요한 임무를 종사했다고 봤다. 재판부는 "피고인은 윤석열에게 비상계엄에 대한 우려를 표했을 뿐, 반대한다고 말하지 않았다"며 "추가 소집한 국무위원들이 도착했음에도 윤석열에게 반대하거나, (국무위원들에게) 반대 의사를 표시하라고 말하지 않았다"고 했다. 재판부는 한 전 총리가 이상민 전 행정안전부 장관에게 특정 언론사 단전·단수를 이행하도록 함으로써 내란에 중요한 임무에 종사했다고도 판단했다. 또한 비상계엄 선포 및 포고령 발령과 관련해 한 전 총리에게 국헌 문란의 목적이 있다고 봤다. 재판부는 "피고인은 윤석열이 비상계엄을 하고 군 병력을 동원해 국회의 권능을 불가능하게 해 폭동을 일으킬 것을 충분히 예상할 수 있었다"고 지적했다. 재판부는 또한 사후 선포문과 관련해 허위공문서 작성 혐의, 대통령 기록물 관리법 위반, 공용서류 손상을 유죄로 판단했으며 허위공문서 행사 혐의에 대해서는 무죄로 봤다. 재판부는 양형과 관련해 설시하면서 윤 전 대통령의 비상계엄 선포에 대해 강도 높게 비판했다. 재판부는 "12·3 내란은 윤석열과 추종세력에 의한 위로부터의 내란 행위, 친위 쿠데타"라며 "위로부터의 내란은 위헌성 정도가 아래로부터의 내란과 비교할 수 없다"고 지적했다. 이어 "12·3 내란 과정에서 사망자가 발생하지 않았고 내란 행위는 4시간 만에 종료했으나 무장 군인에 맨몸으로 맞선 국민의 용기에 의한 것"이라며 "더불어 국민의 저항에 바탕해 국회에 진입해 계엄 해제 요구안을 (가결한) 일부 정치인의 노력과 위법에 저항하거나 소극적으로 참여한 일부 군경에 의한 것"이라고 부연했다. 재판부는 "피고인은 국무총리로서 헌법과 법률을 준수해야 할 의무가 있음에도 (내란이) 성공할지도 모른다는 사실에 이를 외면하고 일원으로서 가담했다"며 "2회 공판에서 내란 행위에 대한 법적 평가가 필요하다고 했다가, CCTV 재생 등으로 범죄사실이 탄로나자 마지 못해 최후진술에서 반성한다고 했지만 진정성을 보기 어렵다. 진지하게 반성했다고 볼 수 없다"고 했다. [서울=뉴스핌] 류기찬 기자 = 한덕수 전 국무총리가 21일 오후 서울 서초구 서울중앙지방법원에서 열린 내란 방조 및 내란 중요임무 종사 혐의 관련 1심 선고 공판에 출석하고 있다. 2026.01.21 ryuchan0925@newspim.com 재판부가 "피고인을 징역 23년에 처한다"고 주문을 읽자 한 전 총리는 별다른 표정 변화 없이 "재판장님 결정에 겸허하게 따르도록 하겠다"고 말했다. 이어 한 전 총리 측 변호인이 "도주 가능성이 없고 구속되면 항소심과 대법원의 재판 진행에 있어 방어권에 장애가 생긴다"고 했으나, 재판부는 "도주 우려가 있다"며 법정 구속했다. 이날 재판부가 12·3 비상계엄에 대해 "형법상 내란 행위에 해당한다"는 것을 뛰어넘어 "윤석열과 추종세력에 의한 친위 쿠데타"라고 규정하면서, 내란우두머리 혐의를 받는 윤 전 대통령의 유죄 가능성은 더욱 짙어졌다. 앞서 조은석 특별검사팀은 지난해 11월 26일 결심 공판에서 "피고인은 이 사건 내란 사태를 막을 수 있는 사실상 유일한 사람임에도 국민 전체의 봉사자로서 의무를 저버리고 계엄 선포 전후 일련의 행위를 통해 내란 범행에 가담했다"며 한 전 총리에게 징역 15년을 구형했다. 장우성 특별검사보는 선고 직후 기자들과 만나 "재판부의 판단에 경의를 표한다"며 "(항소 여부는) 특검과 회의해본 다음에 말씀드리겠다"고 밝혔다. 한 전 총리는 국정 2인자인 국무총리로서 대통령의 독단적 권한 행사를 견제해야 할 의무가 있음에도, 윤 전 대통령의 위헌·위법한 비상계엄 선포를 막지 않고 방조한 혐의 등을 받는다. 재판 진행 중에 재판부의 요청에 따라 내란중요임무종사 혐의도 추가됐다. 또한 계엄이 해제된 최초 계엄 선포문의 법률적 결함을 보완하기 위해 사후 선포문을 작성·폐기한 혐의와 헌법재판소의 윤 전 대통령 탄핵심판 변론에 증인으로 출석해 '계엄 선포문을 인지하지 못했다'는 취지로 위증한 혐의도 받는다. hong90@newspim.com 2026-01-21 15:51
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동