전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능 설계 순서

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

[편집자] 4차 산업혁명은 모든 사물과 인간을 연결하여 빅데이터를 모으고, 이를 이용하여 인공지능으로 학습하여, 결국 인공지능이 인간을 대체하는 시대를 말한다. 이러한 4차 산업혁명의 물결이 산업뿐만 아니라 경제, 사회, 정치 등 전 분야에 걸쳐서 막대한 변화를 일으키고 있다.

글로벌뉴스통신사 뉴스핌은 '김정호의 4차혁명 오딧세이' 칼럼을 매주 연재하여 4차 산업혁명의 본질과 영향, 그리고 전망을 독자들에게 쉽게 소개하고자 한다. 4차 산업혁명의 핵심은 바로 인공지능, 빅데이터, 클라우드 컴퓨팅으로 표현할 수 있으며 그 핵심 부품이 반도체이다. 이들 핵심 기술의 개념과 원리, 응용을 설명하여 일반 독자들이 4차 산업혁명에 대해서 공감하고 이해하며 더 나아가 개인과 기업, 국가의 미래를 계획하는 것을 돕고자 한다.

김정호 카이스트(KAIST) 전기 및 전자공학과 교수는 서울대 전기공학과를 졸업하고 미국 미시건대에서 박사 학위를 받았다. AI대학원 겸임교수, IEEE펠로우, 카이스트 ICT석좌교수, 한화 국방 인공지능 융합연구 센터장, 삼성전자 산학협력 센터장 등을 겸하고 있다.

 

인공지능 개발의 시작 조건

심층기계학습(Deep Machine Learning)으로 불리는 인공지능이 가까운 미래에 인간의 역할을 대부분 대체할 전망이다. 특히 단순 사무직, 자료 조사, 문서 작성, 상담, 심사, 면접 등은 인공지능이 쉽게 잘 할 수 있다.

김정호 교수

은행 창구 지원, 전화 상담원 등이 사라질 대표적인 직업이라 생각한다. 더 나아가 교육자, 의사, 변호사, 법관 등도 그 역할의 상당 부분이 인공지능으로 바뀐다. 인공지능은 빠르고 정확하면서 쉬지도 않는다. 노동조합도 없다.

그 결과, 인간이 '일'과 '노동'에서 소외될 가능성이 크다. 일하고 싶어도 일할 기회가 없어진다는 뜻이다. 앞으로 자라나는 청년들의 취업이 더욱 어려워질 전망이다. 이상적인 상황은 인공지능이 인간의 '일'을 대신해 주고, 대신 인간은 여가 생활, 취미생활, 여행, 독서 등 여가 활동이나 창작 활동을 할 수 있다. 또는 봉사 활동들을 통해서 삶의 의미를 높일 수 있겠다.

인공지능이 인간을 위해서 일을 하도록 하기 위해서는 인공지능을 그러한 목적에 맞게 경제적으로 설계를 해야 한다. 경제적이라는 것은 비용, 시간을 최소화해야 한다는 뜻이다. 그러려면 먼저, 설계하는 인공지능의 목적이 명확할 필요가 있겠다. 일을 대신 할지, 새로운 서비스를 창조할지 등이다.

그리고 그것을 통해서 얻고자 하는 바를 설계에 잘 설정해야 한다. 인간에게 도움을 줄지, 이윤을 얻을지, 효율을 높일지, 에너지나 자원을 절약할지 등이다. 목적하는 바가 인간을 이롭게 해야 한다. 인간을 공격하거나, 인간을 괴롭히지는 말아야 한다.

어찌하거나 인공지능을 설계하려면 목적이 친 인간적이어야 한다. 그리고 개발에 필요한 투자와 거기서부터 얻는 이득 또는 효과가 균형이 맞아야 한다.

인공지능 설계 순서

인공지능의 목적이 명확해지면 설계에 들어간다. 이때 먼저 지도학습 방법을 사용할 것인가, 비지도 학습 방법을 채택할 것인가 정해야 한다.

지도학습에서 대표적인 인공지능 구조가 CNN(Convolution Neural Network), RNN(Recurrent Neural Network), LSTM(Long-term Short-term Memory) 등이 있다.

비지도 학습의 대표적인 구조로 강화 학습이 있다. 판별, 판단(Classification), 인식, 이해, 번역, 인식 등에는 지도학습이 유리하고 게임, 투자, 설계, 최적화 등에는 강화학습이 유용하다.

인공지능 강화학습에 사용되는 동적 프로그래밍(Dynamic Programming)의 예. [출처=KAIST]

다음 단계로, 개발하려는 인공지능의 입력과 출력이 정해진다. 입력은 이미지, 영상, 문장, 책, 소리 등 다양한 디지털 데이터가 된다. 원하는 인공지능 학습과 판단에 필요한 입력 데이터를 설정하고, 충분한 학습과 테스트에 필요한 데이터를 확보해야 한다.

다음으로는 출력을 정해야 한다. 제목이 될 수도 있고, 캡션(caption)이 될 수도 있고, 판단 문장이 될 수도 있고, 그림이 될 수도 있다. 더 나아가 언어가 될 수도 있고, 문장이 될 수도 있고, 목소리가 될 수도 있다.

이때, 지도 학습을 한다고 하면 학습에 쓰일 데이터를 정해야 한다. 그리고 데이터에 설명(Labeling)해야 한다. 어찌 보면 학습용 데이터를 확보하는 것이 가장 난도가 높고 시간과 비용이 많이 들어간다고 볼 수 있다.

데이터를 사업장에서 구할 수도 있다. 구글, 아마존은 자체 플랫폼을 이용해서 데이터를 모은다. 또는 인터넷에서 구할 수도 있다. 이 모든 작업에는 개인의 프라이버시를 침해하지 말아야 하는 어려운 점이 있다. 그래서 플랫폼 확보가 경쟁력이기도 하다.

이렇게도 구하기 어려운 경우, 컴퓨터 시뮬레이션으로 데이터를 만들어 학습하기도 한다. 미래에는 학습용 데이터 자체를 컴퓨터 인공지능으로 만들 수도 있다. 그러면 점점 인공지능은 인간의 손을 떠나게 된다.

이제 인공지능망의 구조(Architecture)를 정해야 한다. CNN, RNN, LSTM을 바로 쓰거나 변형할 수 있다. 대부분 기본 구조를 따르면서 변형하게 된다.

또는 복합적으로 합쳐서 사용하기도 한다. 이때, 데이터 자체도 문장, 그림, 목소리 등 융합적으로 사용하기도 한다. 이런 구조를 멀티모달(Multi-modal) 구조라고 하기도 한다. 앞으로 인공지능 목적에 맞게 새로운 인공지능망 구조도 나오고, 융합할 것으로 예상한다. 이 부분이 창의성이 요구되는 설계 부분이다.

이제 구조가 정해지면 수학적 함수들을 정해야 한다. 활성화 함수(Activation Function)와 비용함수(Cost Function) 등이 구해진다. 이들 함수를 이용해서 역전파 방정식(Back Propagation Chain Relation)을 구한다.

인공지능 설계 순서도. [출처=KAIST]

이 함수들은 판별과 전파, 학습과정에서 핵심 역할을 하는 수학 함수다. 수학 실력이 가장 필요한 부분이다. 그리고 설계 변수(Hyper-parameter)들을 정하고 출력 함수, 신경망 층수, 노드 개수 등을 정한다. 최적화 방법, 초기화 방법도 정한다. 여기에는 개발 경험이 많이 필요하다.

이제 구상된 인공지능을 소프트웨어로 구현한다. 여러 가지의 공개된 프레임워크(Framework)를 사용할 수 있다. 보통 구글에서 개발하고 공개한 '텐서 플로우(Tensor Flow)'를 많이 사용하며, 그 상위 언어로 파이선(Python)을 사용한다. 이때 코딩 능력이 필요하다.

다음 단계에서는 개발한 인공지능을 데이터로 학습하며, 테스트를 거친다. 그리고 일정 부분 오차율 미만이 될 때까지 변수와 구조를 최적화해 간다. 이 부분 또한 시간이 오래 걸린다. 목표한 성능이 나올 때까지 반복적인 작업이 계속된다. 인력과 시간이 소모된다.

마지막으로 목표한 사업 또는 미션에 부합하는지 점검하게 된다. 최종 점검 단계에서 목표한 성능이 나오지 않으면, 구조를 바꿔 다시 설계 작업을 해야 한다. 이처럼 반복 작업이 많다. 반복 작업 줄이려면 경험과 수학, 코딩 실력이 필요하다. 이러한 작업은 작게는 수개월에서 수년의 시간이 걸린다.

인공지능 개발 최종 평가

개발한 인공지능의 평가는 결국 시장에서 받게 된다. 사용자가 많이 생기고 수익이 많으면 성공적이라고 볼 수 있다. 즉, 투자 대비 수익이 높아야 한다. 여기서 수익은 현금, 이익, 수수료 또는 노동, 에너지, 시간 절약 등으로 볼 수 있다. 또는 주관적인 행복, 평화, 사랑 등이 지표가 될 수도 있다.

결국 성능이 좋은 인공지능의 향방은 인공지능 구조의 우수성과 데이터 확보의 용이성, 투자 대비 효과 등이 좌우할 전망이다. 여기에 더해 관리비용, 하드웨어 투자비용, 유지비용도 포함된다. 한발 더 나아가, 개발할 인공지능이 가지는 사회적 가치와 윤리 준수도 중요한 평가 항목이 되어야 한다. 

김정호 카이스트 전기 및 전자공학과 교수 joungho@kaist.ac.kr 

[뉴스핌 베스트 기사]

사진
내년 의대 490명 더 뽑는다 [서울=뉴스핌] 황혜영 기자 = 2027학년도 의과대학 모집 정원이 3548명으로 늘면서 전년보다 490명이 증원된다. 이에 따라 의대 합격선 하락과 재수 이상 'N수생' 증가, 상위권 자연계 입시 재편 등 입시 지형 변화가 불가피할 것으로 보인다. 10일 열린 보건복지부의 보건의료정책심의위원회(보정심)에 따르면 2027학년도 의대 정원이 현행 3058명에서 490명 늘린 3548명으로 확정됐다. 2028·2029학년도에는 613명, 2030·2031학년도에는 813명씩 증원하기로 했다. [서울=뉴스핌] 정일구 기자 = 정부가 2027∼2031학년도 의과대학 정원을 오늘 확정한다. 보건복지부는 10일 오후 보건의료정책심의위원회(보정심) 제7차 회의를 열고 의대 정원 규모를 논의한 뒤 브리핑을 진행해 2027∼2031학년도 의사인력 양성 규모와 교육현장 지원 방안을 발표할 예정이다. 사진은 이날 서울시내 의과대학 모습. 2026.02.10 mironj19@newspim.com 2027학년도 증원분 490명은 비서울권 32개 의대를 중심으로 모두 지역의사제 전형으로 선발되며 해당 지역 중·고교 이력 등을 갖춘 학생만 지원할 수 있는 구조다. 입시업계는 이번 정원 확대가 '지역의사제' 도입과 맞물려 여러 학년에 걸쳐 입시 전반을 흔들 것으로 보고 있다. 이번 증원은 현 고3부터 중학교 2학년까지 향후 5개 학년에 영향을 미칠 것으로 분석된다. 특히 의대 정원 확대에 따른 합격선 하락이 예상된다. 종로학원 분석에 따르면 2025학년도 의대 정원 확대로 합격선 컷이 약 0.3등급 낮아졌으며, 이번 증원도 최소 0.1등급가량 하락을 불러올 것으로 보인다. 당시 지역권 대학의 경우 내신 4.7등급대까지 합격선이 내려오기도 했다. 합격선 하락은 상위권 학생들의 '반수'와 'N수생' 증가로 이어질 가능성이 크다. 임성호 종로학원 대표는 "의대 문턱이 낮아질 것이란 기대가 생기면 최상위권은 물론 중위권대 학생까지도 재도전에 나설 가능성이 커진다"고 전망했다. 특히 2027학년도 입시가 현행 9등급제 내신·수능 체제의 마지막 해라는 점에서 이미 내신이 확정된 상위권 재학생들이 반수에 나설 가능성도 제기된다. 지역의사제 도입은 중·고교 진학 선택에도 적지 않은 영향을 미칠 것으로 보인다. 지역전형 대상 지역의 고교에 진학해야 지원 자격이 주어지기 때문에 서울·경인권 중학생 사이에서는 지방 또는 경기도 내 해당 지역 고교 진학을 고려하는 움직임이 예상된다. 또 일반 의대와 지역의사제 전형 간 합격선 차이도 발생할 것으로 관측된다. 지원 단계부터 일반 의대를 우선 선호하는 경향이 강해 동일 학생이 두 전형에 합격하더라도 일반 의대를 택할 가능성이 높아 지역의사제 전형의 합격선은 다소 낮게 형성되고 중도 탈락률도 상승할 수 있다는 전망이 나온다. 전형 구조 측면에서도 변화가 예상된다. 김병진 이투스교육평가연구소 소장은 "490명 증원 인원 전체가 일반 지원자에게 해당되지는 않으며 지역인재전형과 일반전형으로 나눠 보면 실제 전국 지원자에게 영향을 주는 증원 규모는 약 200명 수준일 것"이라고 분석했다. 또 "최근 3년간 입시에서 모집 인원 변동에 가장 민감하게 반응한 전형은 수시 교과전형, 특히 지역인재전형이었다"며 "이번 증원에서도 교과 중심 지역인재전형의 모집 인원 증가 폭이 전체 입시 흐름을 결정할 것"이라고 전망했다.  hyeng0@newspim.com 2026-02-10 19:32
사진
알파벳 '100년물' 채권에 뭉칫돈 [뉴욕=뉴스핌] 김민정 특파원 = 인공지능(AI) 투자를 위한 실탄 확보에 나선 구글의 모기업 알파벳이 발행한 '100년 만기' 채권이 시장에서 뜨거운 반응을 얻었다. 100년 뒤에나 원금을 돌려받는 초장기 채권임에도 불구하고, 알파벳의 재무 건전성과 AI 패권에 대한 투자자들의 신뢰가 확인됐다는 평가다. 10일(현지시간) 블룸버그통신은 소식통을 인용해 알파벳이 영국 파운드화로 발행한 8억5000만 파운드(약 1조6900억 원) 규모의 100년 만기 채권에 무려 57억5000만 파운드의 매수 주문이 몰렸다고 보도했다. 이날 알파벳은 3년물부터 100년물까지 총 5개 트랜치(만기 구조)로 채권을 발행했는데, 그중 100년물이 가장 큰 인기를 끌었다. 알파벳은 올해 자본지출(CAPEX) 규모를 1850억 달러로 잡고 AI 지배력 강화를 위한 공격적인 행보를 이어가고 있다. 이를 위해 전날 미국 시장에서도 200억 달러 규모의 회사채 발행을 성공적으로 마쳤다. 강력한 수요 덕분에 발행 금리는 당초 예상보다 낮게 책정됐다. 또한 스위스 프랑 채권 시장에서도 3년에서 25년 만기 사이의 5개 트랜치 발행을 계획하며 전방위적인 자금 조달에 나섰다. 100년 만기 채권은 국가나 기업의 신용도가 극도로 높지 않으면 발행하기 어려운 '희귀 아이템'이다. 기술 기업 중에서는 닷컴버블 당시 IBM과 1997년 모토롤라가 발행한 사례가 있으며, 그 외에는 코카콜라, 월트디즈니, 노퍽서던 등 전통적인 우량 기업들이 발행한 바 있다. 기술 기업이 100년물을 발행한 것은 모토롤라 이후 약 30년 만이다. 미국 캘리포니아주 마운틴뷰의 구글.[사진=로이터 뉴스핌] 2026.02.11 mj72284@newspim.com ◆ "알파벳엔 '신의 한 수', 투자자에겐 '미묘한 문제'" 전문가들은 이번 초장기채 발행이 알파벳 입장에서는 매우 합리적인 전략이라고 입을 모은다. 얼렌 캐피털 매니지먼트의 브루노 슈넬러 매니징 파트너는 "이번 채권 발행은 알파벳 입장에서 영리한 부채 관리"라며 "현재 금리 수준이 합리적이고 인플레이션이 장기 목표치 근처에서 유지된다면 알파벳과 같은 기업에 초장기 조달은 매우 타당한 선택"이라고 평가했다. 그러면서 "알파벳의 견고한 재무제표와 현금 창출 능력, 시장 접근성을 고려할 때 100년 만기 채권을 신뢰성 있게 발행할 수 있는 기업은 전 세계에 몇 안 된다"고 강조했다. 하지만 투자자 입장에서는 신중해야 한다는 지적도 나온다. 초장기채는 금리 변화에 따른 가격 변동성(듀레이션 리스크)이 매우 크기 때문이다. HSBC은행의 이송진 유럽·미국 크레딧 전략가는 "AI 산업 자체는 100년 뒤에도 존재하겠지만, 생태계가 5년 뒤에 어떤 모습일지조차 예측하기 어렵다"며 "기업 간 상대적인 서열은 언제든 뒤바뀔 수 있다"고 꼬집었다. 실제로 금리 상승기에는 초장기채의 가격이 급락할 위험이 있다. 지난 2020년 오스트리아가 표면금리 0.85%로 발행한 100년 만기 국채는 이후 금리가 오르면서 현재 액면가의 30%도 안 되는 가격에 거래되고 있다. 이를 두고 슈넬러 파트너 역시 "투자자 입장에서 이 채권의 매력은 훨씬 미묘하고 복잡한 문제"라고 했다. mj72284@newspim.com 2026-02-11 01:35
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동