전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능 반도체의 미래

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

인공지능 가능케 하는 '퍼셉트론' 아십니까?

현재 인공지능의 핵심으로 등장하는 딥러닝 알고리즘은 퍼셉트론(Perceptron)이라고 불리는 인공 신경망 모형에 기초하고 있다.

김정호 카이스트 교수

퍼셉트론은 인공신경망의 한 종류로서, 1957년에 코넬 항공 연구소의 프랑크 로젠블라트(Frank Rosenblatt)에 의해 고안됐다.

이것은 가장 간단한 인공 신경망의 형태로 동물의 신경계를 본 따서 고안되었다. 이러한 퍼셉트론의 동작 방식은 지금 인공지능 딥러닝의 기초가 된다.

퍼셉트론에서 각 노드의 가중치와 입력치를 곱한 것을 모두 합한 값이 활성함수에 의해 판단되는데, 그 합한 값이 임계치를 넘으면 뉴런이 활성화 되고, 그 신호가 다음 단계로 전달된다. 뉴런이 활성화되지 않으면 신호는 다음 단계로 전달되지 않는다.

딥러닝으로 표현되는 최근 인공지능 구조는 이러한 퍼셉트론을 기본 구조로 해서 여러 층의 연결망을 이룬다.

인공지능 기초 단위인 퍼셉트론 (Perceptron)의 구조. [출처=Towards Data Science]

4차 산업혁명 시대의 디지털 데이터는 묶음 형태로 존재한다. 영상 데이터 형태가 그렇고 빅데이터 자체가 그렇다. 그래서 인공지능이 다루는 입출력 데이터는 ‘벡터’ 혹은 다차원 ‘행렬’ 형태를 갖게 된다. 인공지능을 컴퓨터 소프트웨어 코드로 구현하는 과정을 보면, 그 과정에서 수 많은 ‘벡터’ 혹은 ‘행렬” 데이터를 곱하고 더하기를 반복한다고 볼 수 있다. 퍼셉트론 기능에 곱셈과 덧셈이 필요하기 때문이다.

그런데 한 개의 A 행렬과 다음 B 행렬이 곱해질 때, 하나 하나 숫자가 순서대로 곱해지는 것이 아니라 동시에 이루어 진다. 그리고 더해서 수많은 퍼셉트론 배치 자체가 병렬적이고 학습 계산 자체가 병렬적이다. 그 결과 인공지능 알고리즘 구현과정에서 필요한 다차원 디지털 행렬의 곱셈, 덧셈 과정은 매우 병렬적이다. 그래서 기존의 영상 신호 병렬 처리에 유리한 그래픽 프로세서(GPU) 반도체가 요즈음 인공지능 계산에 편리하게 사용되고 있다.

이러한 배경으로 미래의 인공지능 프로세서를 AIP(Artificial Intelligence Processor) 라고 부른다면 이 인공지능 반도체에서는 데이터 병렬 처리 기능이 최대화 되는 구조가 되어야 한다고 본다. 거기에 더해서 계산과정에서의 결과를 메모리 소자에 빠르게 기억해야 한다. 그래서 처리 속도를 높이기 위해서는 물리적으로 기억 소자의 위치가 프로세서에 병렬적이면서도 동시에 극단적으로 더욱 근접하게 배치되어야 한다. 그래서 병렬처리 성능이 지금의 GPU보다 100 배 이상 향상되어야 한다.

또한 계산과 기억을 하기 위해 걸리는 지연시간(Latency)도 지금보다 100 분의 1 이상으로 줄여야 한다. 다음으로 전력 소모가 지금의 100 분의 1 이하로 줄여져야 한다. 그래야 인공지능 컴퓨터가 배터리로 구동되는 자율주행자동차, 손안의 컴퓨터인 스마트폰 안으로 들어올 수 있다. 그래야 4차 산업혁명이 완성된다.

 

인공지능 반도체의 두 가지 발전 방향

이러한 미래 인공지능 반도체의 요구 조건을 만족하기 위해서는 필자는 두 가지 개발 방향을 제시한다.

이 두 가지 방향으로 GPU 와 메모리 사이의 지속적이고 극단적 병렬화 방법과 퍼셉트론의 개념을 반도체 내부 회로나 소자로 구현하는 방법이다.

먼저, 가장 먼저 가능성이 높고 10년 내로 활발히 개발과 사업화가 진행될 방향은 GPU 프로세서와 디램(DRAM) 메모리의 급격한 병렬화 확대이다. 현재의 대표적인 인공지능 반도체인 HBM(High Bandwidth Memory)의 경우 지금은 GPU와 디램 사이의 연결선의 개수가 약 1000 개 수준이다. 미래에는 이 병렬 연결선이 십 만개, 백 만개까지 증가해서 지금보다 병렬화 수준을 더 급속하게 늘려야 한다.

그러기 위해서는 반도체의 구조가 지금의 2차원 구조에서 3 차원 구조로 진화해야 한다. 연결선의 구조 자체도 3차원이 되고, 연결선 기판도 실리콘이 되어야 한다. 연결선 하나가 초당 100 기가비트(100GBps) 이상 보낼 수 있는 전자파 도파관 구조로 변해야 한다. 이를 통해서 계산 속도도 늘리면서 동시에 전력소모와 시간 지연을 줄일 수 있다. 경우에 따라 메모리 위에 프로세서가 설치되는 PIM(Processor In Memory) 구조가 3차원적으로 적층될 수 있다.

클라우드 컴퓨팅 시스템과 인공지능 서버용 프로세서는 이러한 구조로 발전해야 한다고 본다. 이렇게 되면 기존의 프로세서 주류가 CPU, AP(Application Processor), GPU 에서 3D HBM 과 PIM이 결합된 구조로 진화할 가능성이 크다. 또한 자율주행자동차, 가전기기 등에도 사용될 전망이다. 구글 TPU(텐서 프로세서 유닛), IBM, 마이크로소프트, 엔비디아 기업 계열은 이 방향으로 인공지능 반도체 기술 개발을 추진할 것으로 예측한다.

병렬화가 극단적으로 증가하는 미래 인공지능 반도체의 발전 방향. [출처=KAIST]

 

인공지능 클라우드 서버에 사용되는 구글 TPU 모듈 사진, [출처=Wired]

다음의 방법은 인공지능 핵심 소자인 퍼셉트론을 실리콘 반도체 내부의 회로(Circuit)나 소자(Device)로 구현하는 방향이다. 프로세서와 메모리가 분리되지 않고 한 곳에 복합된다.

그러려면 간단한 행렬 계산과 더하기가 반도체 내부 회로나 소자 자체적으로 수행 가능해야 한다. 간단한 기억 소자도 같이 있어야 한다. 그리고 이러한 간단한 계산 회로와 기억 소자가 마이크로미터 단위(100 만 분의 1 미터)의 크기로 반도체 공간 안에 같이 구현할 수 있어야 한다. 그러니 신 소자와 신 물질이 개발되어야 한다. 이 방법이 구현되면 병렬 데이터가 외부 메모리로 들락거리지 않아도 되기 때문에 병렬성이 더욱 극대화 되면서 동시에 전력 소모, 시간 지연 문제가 해결 될 수 있다. 이러한 시도의 대표적 인공지능 반도체를 뉴로모픽칩(Neuromorphic Chip)이라고 부르기도 한다.

이 인공지능 반도체는 전력 소모가 작아야 하는 손안의 핸드폰으로 인공지능이 들어가는데 꼭 필요한 반도체이다. 스마트 IoT 센서에도 필요한 인공지능 반도체이다. 이러기 위해서는 현재의 실리콘 프로세서나 메모리가 갖고 있는 소자 구조와 물질 그리고 공정이 혁신적으로 바뀌어야 한다.

하지만 이 구조의 단점은 속도가 느리고, 인공지능 알고리즘과 프로그램을 마음대로 바꿀 수 없어 시스템 유연성(Flexibility)이 크게 약화된다. 그래서 응용 분야의 제한이 있을 수 있다. 대표적인 스마트폰 관련 회사인 삼성전자, 애플, 화웨이(Huwawei), 퀄텀 등에서 적극적으로 개발할 필요가 있는 방식이다. 다만 연구와 개발에 장기간이 소요될 전망이다.

반도체 회로와 소자를 이용해 구현하는 인공지능 반도체 뉴로모픽칩, [출처=IEEE Spectrum]
반도체 내부 아날로그 회로를 이용해서 퍼셉트론을 구현하는 인공지능 반도체, [출처=KAIST]


인공지능 반도체는 새로운 기회

미래 인공지능 반도체 방향으로 제시한 두 가지 방향은 각각 장단점을 갖고 있다. 알고리즘 구현의 유연성(Programmability), 현재 기술의 성숙도, 성능, 전력소모, 대량 생산 인프라의 존재 여부, 시장의 크기, 가격, 수율, 안전성에 따라 어느 방법이 더 유망하고 실현 가능한지 달라질 전망이다. 필자는 단기적으로는 병렬화가 증가한 3D HBM-PIM 구조가 당분간 인공지능 프로세서 시장을 주도할 것으로 전망한다. 그리고 장기적으로는 물질과 공정의 혁신으로 새로운 저전력 인공지능 반도체가 나타날 것으로 본다. 이 단계가 되면 모든 사물에 인공지능 기능이 들어가게 된다.

삼성전자, SK 하이닉스로 대표되는 한국 반도체 산업은 반도체 메모리로 집중 성장해 왔다. 4차 산업혁명의 중심인 빅데이터를 기록하기 위해, 그리고 인공지능 서버에는 반도체 메모리의 성능 요구 조건이 계속 증가하고 있다. 또한 그 수요도 지속적으로 증가할 전망이다. 하지만 4차 산업혁명 시대의 또 다른 반도체 산업 성장하는 기회가 바로 ‘인공지능 반도체’이다. 창의적이고 혁신적인 기술 투자와 인력 양성을 통해서 이 절호의 기회를 잡을 수 있어야 한다. 인텔, IBM, AMD, 엔비디아를 뛰어 넘는 인공지능 프로세서 기업이 한국에서 나오기를 고대한다. 새로운 기회의 땅이다.

인공지능 반도체 개발에 투자하고 있는 대표적 글로벌 기업들, [출처=KAIST]

 

joungho@kaist.ac.kr   


[김정호 카이스트 전기 및 전자공학과 교수]

 

[관련키워드]

[뉴스핌 베스트 기사]

사진
내년 의대 490명 더 뽑는다 [서울=뉴스핌] 황혜영 기자 = 2027학년도 의과대학 모집 정원이 3548명으로 늘면서 전년보다 490명이 증원된다. 이에 따라 의대 합격선 하락과 재수 이상 'N수생' 증가, 상위권 자연계 입시 재편 등 입시 지형 변화가 불가피할 것으로 보인다. 10일 열린 보건복지부의 보건의료정책심의위원회(보정심)에 따르면 2027학년도 의대 정원이 현행 3058명에서 490명 늘린 3548명으로 확정됐다. 2028·2029학년도에는 613명, 2030·2031학년도에는 813명씩 증원하기로 했다. [서울=뉴스핌] 정일구 기자 = 정부가 2027∼2031학년도 의과대학 정원을 오늘 확정한다. 보건복지부는 10일 오후 보건의료정책심의위원회(보정심) 제7차 회의를 열고 의대 정원 규모를 논의한 뒤 브리핑을 진행해 2027∼2031학년도 의사인력 양성 규모와 교육현장 지원 방안을 발표할 예정이다. 사진은 이날 서울시내 의과대학 모습. 2026.02.10 mironj19@newspim.com 2027학년도 증원분 490명은 비서울권 32개 의대를 중심으로 모두 지역의사제 전형으로 선발되며 해당 지역 중·고교 이력 등을 갖춘 학생만 지원할 수 있는 구조다. 입시업계는 이번 정원 확대가 '지역의사제' 도입과 맞물려 여러 학년에 걸쳐 입시 전반을 흔들 것으로 보고 있다. 이번 증원은 현 고3부터 중학교 2학년까지 향후 5개 학년에 영향을 미칠 것으로 분석된다. 특히 의대 정원 확대에 따른 합격선 하락이 예상된다. 종로학원 분석에 따르면 2025학년도 의대 정원 확대로 합격선 컷이 약 0.3등급 낮아졌으며, 이번 증원도 최소 0.1등급가량 하락을 불러올 것으로 보인다. 당시 지역권 대학의 경우 내신 4.7등급대까지 합격선이 내려오기도 했다. 합격선 하락은 상위권 학생들의 '반수'와 'N수생' 증가로 이어질 가능성이 크다. 임성호 종로학원 대표는 "의대 문턱이 낮아질 것이란 기대가 생기면 최상위권은 물론 중위권대 학생까지도 재도전에 나설 가능성이 커진다"고 전망했다. 특히 2027학년도 입시가 현행 9등급제 내신·수능 체제의 마지막 해라는 점에서 이미 내신이 확정된 상위권 재학생들이 반수에 나설 가능성도 제기된다. 지역의사제 도입은 중·고교 진학 선택에도 적지 않은 영향을 미칠 것으로 보인다. 지역전형 대상 지역의 고교에 진학해야 지원 자격이 주어지기 때문에 서울·경인권 중학생 사이에서는 지방 또는 경기도 내 해당 지역 고교 진학을 고려하는 움직임이 예상된다. 또 일반 의대와 지역의사제 전형 간 합격선 차이도 발생할 것으로 관측된다. 지원 단계부터 일반 의대를 우선 선호하는 경향이 강해 동일 학생이 두 전형에 합격하더라도 일반 의대를 택할 가능성이 높아 지역의사제 전형의 합격선은 다소 낮게 형성되고 중도 탈락률도 상승할 수 있다는 전망이 나온다. 전형 구조 측면에서도 변화가 예상된다. 김병진 이투스교육평가연구소 소장은 "490명 증원 인원 전체가 일반 지원자에게 해당되지는 않으며 지역인재전형과 일반전형으로 나눠 보면 실제 전국 지원자에게 영향을 주는 증원 규모는 약 200명 수준일 것"이라고 분석했다. 또 "최근 3년간 입시에서 모집 인원 변동에 가장 민감하게 반응한 전형은 수시 교과전형, 특히 지역인재전형이었다"며 "이번 증원에서도 교과 중심 지역인재전형의 모집 인원 증가 폭이 전체 입시 흐름을 결정할 것"이라고 전망했다.  hyeng0@newspim.com 2026-02-10 19:32
사진
알파벳 '100년물' 채권에 뭉칫돈 [뉴욕=뉴스핌] 김민정 특파원 = 인공지능(AI) 투자를 위한 실탄 확보에 나선 구글의 모기업 알파벳이 발행한 '100년 만기' 채권이 시장에서 뜨거운 반응을 얻었다. 100년 뒤에나 원금을 돌려받는 초장기 채권임에도 불구하고, 알파벳의 재무 건전성과 AI 패권에 대한 투자자들의 신뢰가 확인됐다는 평가다. 10일(현지시간) 블룸버그통신은 소식통을 인용해 알파벳이 영국 파운드화로 발행한 8억5000만 파운드(약 1조6900억 원) 규모의 100년 만기 채권에 무려 57억5000만 파운드의 매수 주문이 몰렸다고 보도했다. 이날 알파벳은 3년물부터 100년물까지 총 5개 트랜치(만기 구조)로 채권을 발행했는데, 그중 100년물이 가장 큰 인기를 끌었다. 알파벳은 올해 자본지출(CAPEX) 규모를 1850억 달러로 잡고 AI 지배력 강화를 위한 공격적인 행보를 이어가고 있다. 이를 위해 전날 미국 시장에서도 200억 달러 규모의 회사채 발행을 성공적으로 마쳤다. 강력한 수요 덕분에 발행 금리는 당초 예상보다 낮게 책정됐다. 또한 스위스 프랑 채권 시장에서도 3년에서 25년 만기 사이의 5개 트랜치 발행을 계획하며 전방위적인 자금 조달에 나섰다. 100년 만기 채권은 국가나 기업의 신용도가 극도로 높지 않으면 발행하기 어려운 '희귀 아이템'이다. 기술 기업 중에서는 닷컴버블 당시 IBM과 1997년 모토롤라가 발행한 사례가 있으며, 그 외에는 코카콜라, 월트디즈니, 노퍽서던 등 전통적인 우량 기업들이 발행한 바 있다. 기술 기업이 100년물을 발행한 것은 모토롤라 이후 약 30년 만이다. 미국 캘리포니아주 마운틴뷰의 구글.[사진=로이터 뉴스핌] 2026.02.11 mj72284@newspim.com ◆ "알파벳엔 '신의 한 수', 투자자에겐 '미묘한 문제'" 전문가들은 이번 초장기채 발행이 알파벳 입장에서는 매우 합리적인 전략이라고 입을 모은다. 얼렌 캐피털 매니지먼트의 브루노 슈넬러 매니징 파트너는 "이번 채권 발행은 알파벳 입장에서 영리한 부채 관리"라며 "현재 금리 수준이 합리적이고 인플레이션이 장기 목표치 근처에서 유지된다면 알파벳과 같은 기업에 초장기 조달은 매우 타당한 선택"이라고 평가했다. 그러면서 "알파벳의 견고한 재무제표와 현금 창출 능력, 시장 접근성을 고려할 때 100년 만기 채권을 신뢰성 있게 발행할 수 있는 기업은 전 세계에 몇 안 된다"고 강조했다. 하지만 투자자 입장에서는 신중해야 한다는 지적도 나온다. 초장기채는 금리 변화에 따른 가격 변동성(듀레이션 리스크)이 매우 크기 때문이다. HSBC은행의 이송진 유럽·미국 크레딧 전략가는 "AI 산업 자체는 100년 뒤에도 존재하겠지만, 생태계가 5년 뒤에 어떤 모습일지조차 예측하기 어렵다"며 "기업 간 상대적인 서열은 언제든 뒤바뀔 수 있다"고 꼬집었다. 실제로 금리 상승기에는 초장기채의 가격이 급락할 위험이 있다. 지난 2020년 오스트리아가 표면금리 0.85%로 발행한 100년 만기 국채는 이후 금리가 오르면서 현재 액면가의 30%도 안 되는 가격에 거래되고 있다. 이를 두고 슈넬러 파트너 역시 "투자자 입장에서 이 채권의 매력은 훨씬 미묘하고 복잡한 문제"라고 했다. mj72284@newspim.com 2026-02-11 01:35
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동