전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능은 강아지와 고양이를 어떻게 구분할까?

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

알고보면 흥미로운 선형대수(linear algebra. 線型代數)

보통 고등학교 때 처음 수학 ‘행렬’을 배운다. 행렬은 다차원적인 숫자의 나열로 2차원인 경우 '(x,y)'로 표현된다. 대부분의 고등학교 수학처럼 왜 배워야 하는지, 어디 쓰는지 그때 알기 어렵다. 그런데 이 행렬 수학이 ‘인공지능 컴퓨터 계산’의 핵심 방법이다.

김정호 카이스트 교수

필자는 대학 2학년때 ‘선형 대수학’이라는 수학과목을 수강했다. 행렬의 수학적 의미와 원리를 배운다. 이 과목은 필자가 대학 때 공부한 과목 중에 가장 감동적이고 재미가 있었다. 수학 논리 전개의 아름다움을 깊이 느끼는 계기가 됐기 때문이다. 전기공학이나, 전자 공학, 전산 과목 또는 물리학 과목이 아니라 ‘수학과목’이었던 기억이 흥미롭고 그 중에서도 선형대수학이라는 과목이라는 점도 지금도 신기하다.

선형대수학에서는 벡터에서 출발해서 행렬의 정의하고 행렬의 기본이 되는 원리들을 순서대로 제시하고 증명한다. 행렬 속의 각 열 벡터가 서로 상호 의존적인가 독립적인가 논의한다. 서로 선형적이면 종속적이고 비선형적이면 독립적이다. 각 열 벡터가 독립적 벡터로 이루어진 행렬은 역행렬이 존재하고 구할 수 있다. 역행렬이 존재하는 행렬은 그 벡터들을 더하고 곱해서 변형하면 대각행렬(Diagonal Matrix, 대각선 부분 숫자만 있고 나머지는 모두 ‘0’인 행렬)가 될 수 있다.

선형대수 과목에서는 이러한 이론들을 처음부터 끝까지 200 여 페이지 책에서 순서대로 빈틈없이 증명한다. 처음부터 끝까지 한 개의 논리적 오점 없이 전체를 증명하고 전개해 간다. 이러한 논리의 완결성이 눈부시기까지 하다. 완벽하게 논리적이다.

행렬의 구성과 곱셈 공식. [출처: 정보통신 기술용어해설]
대각행렬의 구성과 조건. [출처: 정보통신 기술용어해설]

 

강아지와 고양이를 구분하게 해주는 'CNN 알고리즘'


요즈음 행렬 계산이 공학적으로 더욱 중요해 지고 있다. 모든 빅데이터가 디지털로 기록되기 때문이다.

그 중에서도 데이터의 깊이가 크고 정보량이 많은 데이터가 영상 이미지이다. 카메라에서 얻은 이미지는 카메라 센서가 2차원 평면 배열로 되어 있다. 이 배열 자체가 (x,y) 2차원이다. 여기에 색깔 정보, 밝기 정보, 빛의 세기 정보가 더해지면 N 차원 정보가 되고 이를 수학적으로 표시하면 N 차원 행렬이 된다. 그래서 유튜브의 사용이 더욱 확대되면 행렬 계산양도 늘어난다.

인공지능 딥러닝 알고리즘 중에서 영상 이미지 판독에 가장 유효하게 쓰이는 방법이 CNN(Convolution Neural Network) 이라는 알고리즘이다. CNN 에는 여러 개의 신경망 층으로 이루어져 있다. 쉽게 이야기해서 CNN 입력으로 사진이 들어가면 CNN이 강아지인지, 고양이 인지, 곰인지, 사슴인지 찾아 낸다.

그런데 이 CNN 에서 여러 개의 신경망 층(Layer)을 지나면서 각 층의 출력이 단순화되고 추상화 되어 나간다. 이러한 과정을 거치면서 입력이 수천 다차원 행렬이라 하더라도 최종 출력은 ‘동물의 이름’이 되기 때문이다. 이렇게 크기가 큰 행렬을 줄여나가는 과정을 수학적으로 함수 합성곱(Convolution) 이라고 한다. 이 과정은 수식적으로 볼 때 크기가 큰 행렬에 작은 크기의 행렬을 계속 곱해서 얻는다.

이 곱하는 작은 행렬을 필터 행렬이라고 한다. 이렇게 되면 각 신경망 층이 추상화(Abstraction) 과정을 하게 된다. 첫 층의 입력이 사진이라면 2층은 윤곽을 표현하고, 3층은 코, 입, 귀를 판단하고, 뒷 부분 층은 남녀 인종 등을 파악하고 최종적으로 누구인지 파악하는 과정을 거친다. 이처럼 CNN 에서도 학습과정에서 계속해서 행렬 연산이 이루어져 있다.

사진과 영상 분석에 유용한 인공지능 알고리즘인 CNN의 구성도. [출처: Intel]

행렬과 텐서

그러니 인공지능을 위한 프로그램을 만들기 위해 소프트웨어 코딩을 한다는 것은 수많은 행렬연산을 계획된 순서대로 짜는 것과 같다. 특히 인공지능의 학습과정과 ‘판단(Decision)’ 혹은 ‘추론(Inference)’을 내릴 때 수 많은 행렬 연산을 한다. 그래서 인공지능을 연구하고 개발한다는 의미는 행렬 연산에 묻혀 사는 것과 같다.

이처럼 다차원 행렬을 수학에서 텐서(Tensor)라고 부른다. 그러므로 스칼라(Scalar)는 ‘0 텐서’, 벡터(Vector)는 ‘1 텐서’, 행렬은 ‘2 텐서’라고 부르기도 한다. 구글에서 제공하는 인공지능 계산 플랫폼을 텐서 플로우(Tensor Flow) 라고 부르는 것이 이런 배경이 된다. 인공지능에서 다 차원 행렬인 텐서 계산이 딥러닝 층을 지나가면서 쭉 흘러간다. 이 수학적인 과정이 학습과 판단 과정이다.

재미있는 드라마에는 ‘암시’를 주고 되살아나는 과정이 있으며, 이 과정이 드라마의 재미를 더해 준다. 암시는 장면, 만남, 표정, 대사에서 다양하게 나타난다. 특히 드라마 초반에 나타나 미래 전개 과정을 암시한다. 필자가 대학 2학년 때 선형대수 과목에 푹 빠졌던 것은 40년 후 다가올 4차 산업혁명 시대와 인공지능 시대를 암시했는지도 모른다.

구글의 오픈소스 인공지능 플랫폼 텐서 플로우, [출처: Data Flair]

 

 

joungho@kaist.ac.kr


[김정호 카이스트 전기 및 전자공학과 교수]

[관련키워드]

[뉴스핌 베스트 기사]

사진
李대통령 국정지지율 61% [한국갤럽] [서울=뉴스핌] 박찬제 기자 = 이재명 대통령의 국정 지지율이 소폭 상승해 61%를 기록했다는 여론조사 결과가 23일 나왔다. 한국갤럽은 지난 20~22일 전국 만 18살 이상 유권자 총 1000명을 대상으로 진행한 조사에서 이 대통령의 직무수행 평가에 '잘하고 있다'며 답한 응답자는 지난주보다 3%포인트(p) 오른 61%로 나타났다. '잘못하고 있다'는 부정 평가는 직전 조사보다 2%p 줄어든 30%로 조사됐다. '의견 없음'은 10%다. 이재명 대통령이 21일 청와대에서 신년 기자회견을 하면서 언론 질문에 답하고 있다. [사진=청와대] 이 대통령 직무 수행의 긍정적 이유는 외교가 27%로 가장 높았다. 뒤이어 '경제·민생'이 14%, '소통'이 8%였다. 부정적 평가 이유로는 '경제·민생'이 22%, '독재·독단'과 '전반적으로 잘못한다'가 각각 7%를 차지했다. '도덕성문제·본인 재판 회피(6%)', '과도한 복지·민생지원금(5%)' 등의 이유도 있었다. 정당 지지도는 여당인 더불어민주당이 2%p 오른 43%, 국민의힘은 2%p 하락한 22%로 조사됐다. 조국혁신당은 3%, 개혁신당 2%, 진보당 1%였다. 무당층은 27%다.이번 조사는 이동통신 3사가 제공한 무선전화 가상번호를 무작위로 추출해 전화조사원이 인터뷰하는 방식으로 이뤄졌다. 표본오차는 95% 신뢰수준에서 ±3.1%포인트다. 응답률은 12.3%다. 자세한 내용은 중앙여론조사심의위원회 홈페이지에서 확인할 수 있다. pcjay@newspim.com 2026-01-23 10:51
사진
한덕수 징역 23년 선고...법정구속 [서울=뉴스핌] 홍석희 박민경 기자 = 윤석열 전 대통령의 내란 행위 방조 등 혐의로 재판에 넘겨진 한덕수 전 국무총리가 21일 1심에서 징역 23년을 선고받았다. 법원은 12·3 비상계엄을 "윤석열 전 대통령의 친위 쿠데타"로 규정하며 조은석 특별검사팀이 구형한 징역 15년을 훌쩍 뛰어넘는 중형을 선고했다. 서울중앙지법 형사합의33부(재판장 이진관)는 이날 내란우두머리방조·내란중요임무종사·위증 등 혐의를 받는 한 전 총리에게 징역 23년을 선고하고, 증거 인멸을 우려로 법정 구속했다. 검정색 정장, 흰색 셔츠에 청록색 넥타이를 매고 법정에 나온 한 전 총리는 재판부가 판결문을 읽는 동안 허리를 꼿꼿이 세우고 무표정으로 앉아 있었다. [서울=뉴스핌] 류기찬 기자 = 한덕수 전 국무총리가 21일 오후 서울 서초구 서울중앙지방법원에서 열린 내란 방조 및 내란 중요임무 종사 혐의 관련 1심 선고 공판에 출석하고 있다. 2026.01.21 ryuchan0925@newspim.com 재판부는 한 전 총리의 내란중요임무종사 혐의에 대해 유죄로 판단하면서 "12·3 비상계엄 선포와 이에 근거해 위헌·위법한 포고령을 발령하고, 군 병력을 동원해 국회 등을 점거한 행위는 형법상 내란 행위에 해당한다"고 판시했다. 재판부는 한 전 총리가 계엄 직전 국무회의의 절차적 요건을 갖추는 방식으로 내란의 중요한 임무를 종사했다고 봤다. 재판부는 "피고인은 윤석열에게 비상계엄에 대한 우려를 표했을 뿐, 반대한다고 말하지 않았다"며 "추가 소집한 국무위원들이 도착했음에도 윤석열에게 반대하거나, (국무위원들에게) 반대 의사를 표시하라고 말하지 않았다"고 했다. 재판부는 한 전 총리가 이상민 전 행정안전부 장관에게 특정 언론사 단전·단수를 이행하도록 함으로써 내란에 중요한 임무에 종사했다고도 판단했다. 또한 비상계엄 선포 및 포고령 발령과 관련해 한 전 총리에게 국헌 문란의 목적이 있다고 봤다. 재판부는 "피고인은 윤석열이 비상계엄을 하고 군 병력을 동원해 국회의 권능을 불가능하게 해 폭동을 일으킬 것을 충분히 예상할 수 있었다"고 지적했다. 재판부는 또한 사후 선포문과 관련해 허위공문서 작성 혐의, 대통령 기록물 관리법 위반, 공용서류 손상을 유죄로 판단했으며 허위공문서 행사 혐의에 대해서는 무죄로 봤다. 재판부는 양형과 관련해 설시하면서 윤 전 대통령의 비상계엄 선포에 대해 강도 높게 비판했다. 재판부는 "12·3 내란은 윤석열과 추종세력에 의한 위로부터의 내란 행위, 친위 쿠데타"라며 "위로부터의 내란은 위헌성 정도가 아래로부터의 내란과 비교할 수 없다"고 지적했다. 이어 "12·3 내란 과정에서 사망자가 발생하지 않았고 내란 행위는 4시간 만에 종료했으나 무장 군인에 맨몸으로 맞선 국민의 용기에 의한 것"이라며 "더불어 국민의 저항에 바탕해 국회에 진입해 계엄 해제 요구안을 (가결한) 일부 정치인의 노력과 위법에 저항하거나 소극적으로 참여한 일부 군경에 의한 것"이라고 부연했다. 재판부는 "피고인은 국무총리로서 헌법과 법률을 준수해야 할 의무가 있음에도 (내란이) 성공할지도 모른다는 사실에 이를 외면하고 일원으로서 가담했다"며 "2회 공판에서 내란 행위에 대한 법적 평가가 필요하다고 했다가, CCTV 재생 등으로 범죄사실이 탄로나자 마지 못해 최후진술에서 반성한다고 했지만 진정성을 보기 어렵다. 진지하게 반성했다고 볼 수 없다"고 했다. [서울=뉴스핌] 류기찬 기자 = 한덕수 전 국무총리가 21일 오후 서울 서초구 서울중앙지방법원에서 열린 내란 방조 및 내란 중요임무 종사 혐의 관련 1심 선고 공판에 출석하고 있다. 2026.01.21 ryuchan0925@newspim.com 재판부가 "피고인을 징역 23년에 처한다"고 주문을 읽자 한 전 총리는 별다른 표정 변화 없이 "재판장님 결정에 겸허하게 따르도록 하겠다"고 말했다. 이어 한 전 총리 측 변호인이 "도주 가능성이 없고 구속되면 항소심과 대법원의 재판 진행에 있어 방어권에 장애가 생긴다"고 했으나, 재판부는 "도주 우려가 있다"며 법정 구속했다. 이날 재판부가 12·3 비상계엄에 대해 "형법상 내란 행위에 해당한다"는 것을 뛰어넘어 "윤석열과 추종세력에 의한 친위 쿠데타"라고 규정하면서, 내란우두머리 혐의를 받는 윤 전 대통령의 유죄 가능성은 더욱 짙어졌다. 앞서 조은석 특별검사팀은 지난해 11월 26일 결심 공판에서 "피고인은 이 사건 내란 사태를 막을 수 있는 사실상 유일한 사람임에도 국민 전체의 봉사자로서 의무를 저버리고 계엄 선포 전후 일련의 행위를 통해 내란 범행에 가담했다"며 한 전 총리에게 징역 15년을 구형했다. 장우성 특별검사보는 선고 직후 기자들과 만나 "재판부의 판단에 경의를 표한다"며 "(항소 여부는) 특검과 회의해본 다음에 말씀드리겠다"고 밝혔다. 한 전 총리는 국정 2인자인 국무총리로서 대통령의 독단적 권한 행사를 견제해야 할 의무가 있음에도, 윤 전 대통령의 위헌·위법한 비상계엄 선포를 막지 않고 방조한 혐의 등을 받는다. 재판 진행 중에 재판부의 요청에 따라 내란중요임무종사 혐의도 추가됐다. 또한 계엄이 해제된 최초 계엄 선포문의 법률적 결함을 보완하기 위해 사후 선포문을 작성·폐기한 혐의와 헌법재판소의 윤 전 대통령 탄핵심판 변론에 증인으로 출석해 '계엄 선포문을 인지하지 못했다'는 취지로 위증한 혐의도 받는다. hong90@newspim.com 2026-01-21 15:51
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동